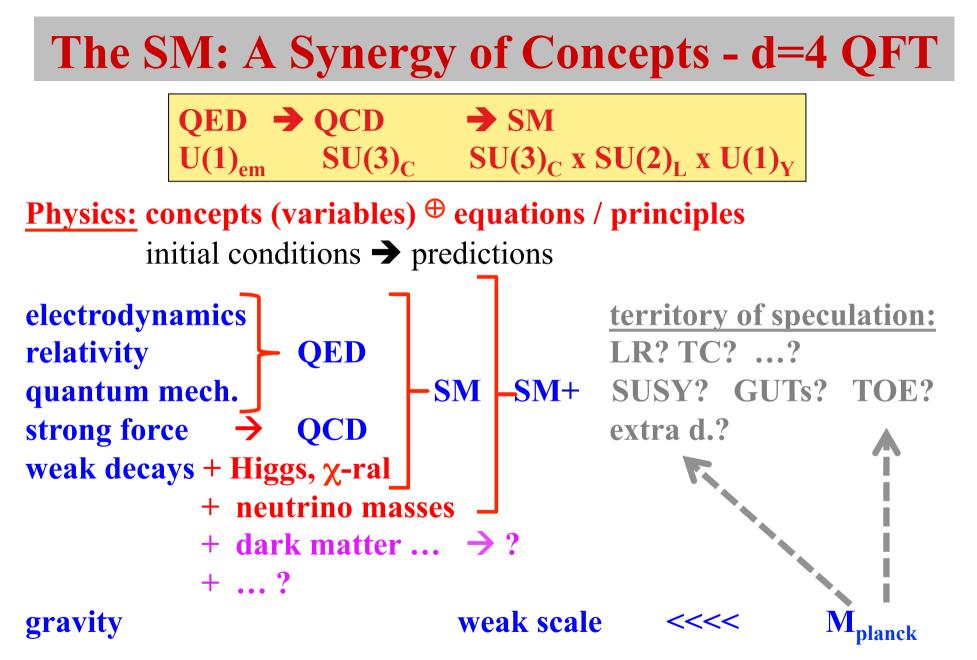
Scale Invariance and Electro-Weak Symmetry Breaking

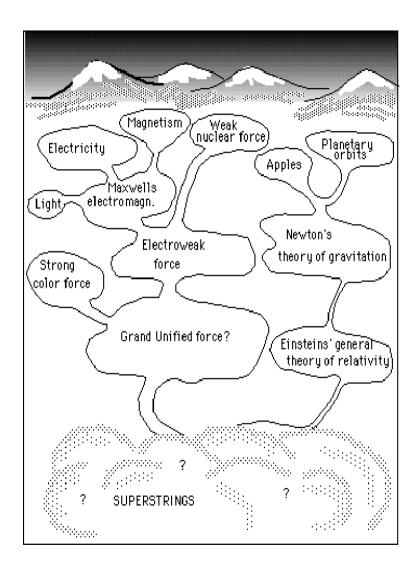
Manfred Lindner



Note: GR non-renormalizable... maybe good: QFT's cannot explain scales→other concepts

SCALARS 2013, Warsaw

Reasons to go Beyond the Standard Model

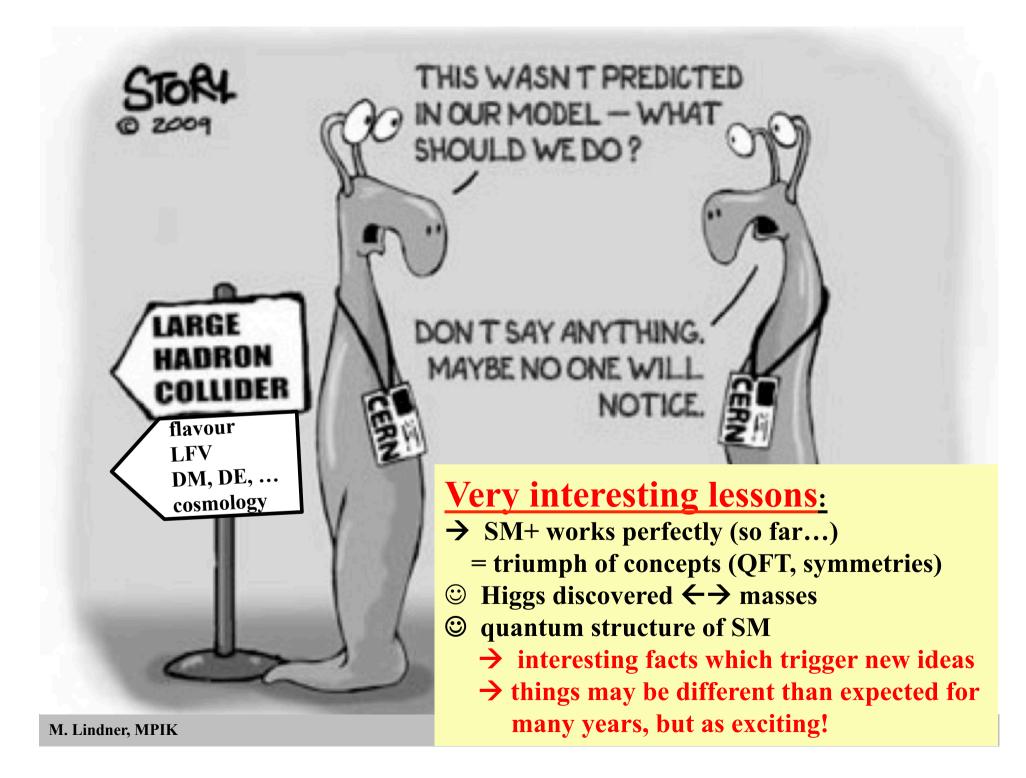


Theoretical:

SM does not exist without cutoff (triviality, vacuum stability) Gauge hierarchy problem Gauge unification, charge quantization Strong CP problem Unification with gravity Global symmetries & GR anomalies Why: 3 generations, representations, d=4, many parameters

Experimental facts:

- Electro weak scale << Planck scale
- Gauge couplings almost unify
- Neutrinos masses & large mixings
- Flavour: Patterns of masses & mixings
- Baryon asymmetry of the Universe
- Dark Matter
- Inflation
- Dark Energy

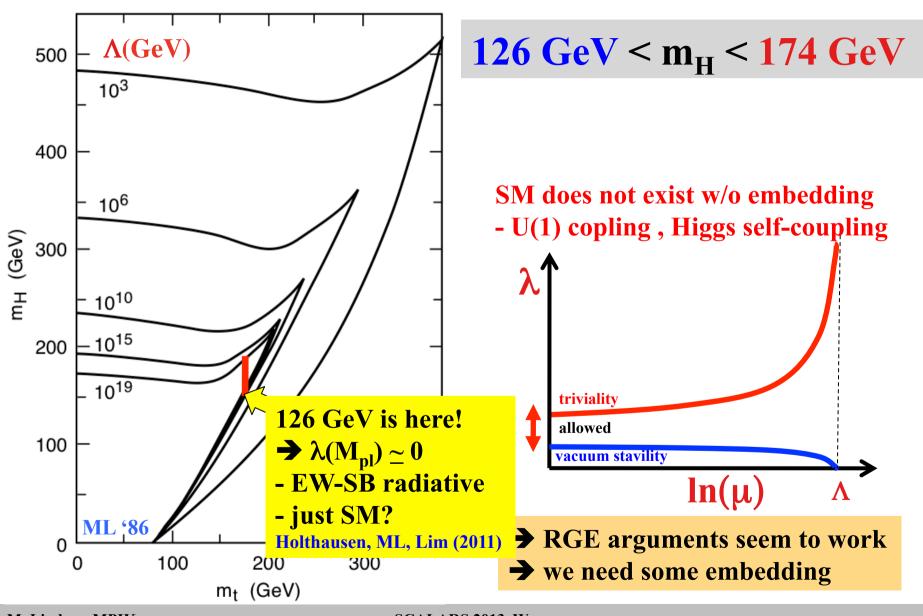


Look very careful at the SM as QFT

- The SM itself (without embedding) is a QFT like QED
 - infinities, renormalization only differences are calculable
 - perfectly OK > many things unexplained...
- It has (like QED) a triviality problem (Landau poles)
 - running U(1) coupling (pole well beyond Planck scale...)
 - running Higgs coupling \rightarrow upper bounds on $m_{\rm H}$
 - \rightarrow requires some scale Λ where the SM is embedded
 - → the physics of this scale is unknown
 - → does not hurt SM QFT-calculations @ 0,1,2,.. Loops
- Another potential problem is vacuum instability (negative λ)
 - does occur in SM for large top mass > 79 GeV \rightarrow lower bounds on m_H

SM as QFT: A hard cutoff and the sensitivity towards ∧ has no meaning ←→ The SM is a renormalizable QFT just like QED

Triviality and Vacuum Stability



The allowed Range **← →** Experiment

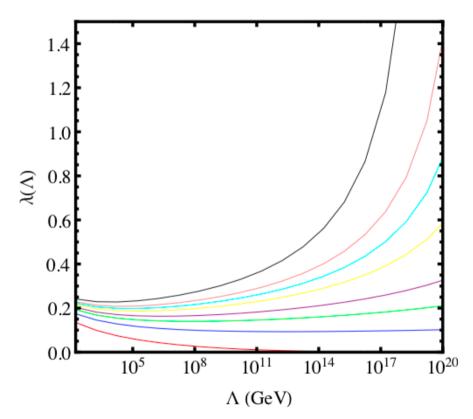
$$m_{\min} = [126.3 + rac{m_t - 171.2}{2.1} imes 4.1 - rac{lpha_s - 0.1176}{0.002} imes 1.5] ext{ GeV}$$
 $m_{\max} = [173.5 + rac{m_t - 171.2}{2.1} imes 1.1 - rac{lpha_s - 0.1176}{0.002} imes 0.3] ext{ GeV}$

→ interesting experimental cases (for Λ = M_{Planck}):
1) m_H < ca. 126 GeV → instability → new physics (or disaster)
2) 126 GeV - 135 GeV perfect: SM + MSSM range, ...
3) 135 GeV - 157 GeV perfect: SM , non-minimal SUSY, ...
4) above 157 GeV - BSM

→ <u>Remarkable aspects:</u>

- SM parameters ←→ quantum corrections over large scales
- we seem to be very precisely at the transition between 1) and 2)

A special Value of λ at M_{planck} ?



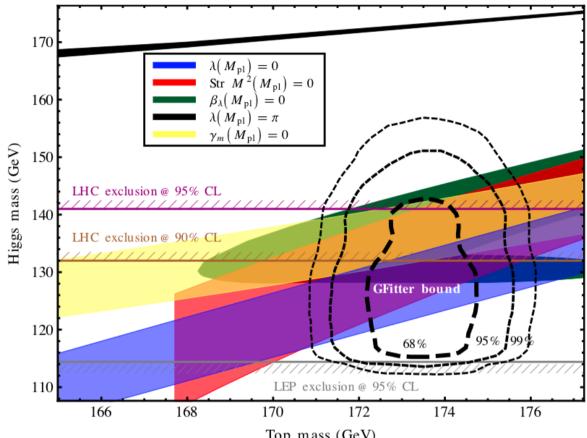
downward flow of RG trajectories
→ IR QFP → random λ flows to m_H > 150 GeV
→ m_H ~ 126 GeV flows to tiny values at M_{Planck}...

Holthausen, ML Lim (2011) Different conceivable special conditions:

- Vacuum stability $\lambda(M_{pl}) = 0$ [7–12]
- vanishing of the beta function of λ $\beta_{\lambda}(M_{pl}) = 0$ [9, 10]
- the Veltman condition [13-15] Str $\mathcal{M}^2 = 0$,

$$\delta m^2 = \frac{\Lambda^2}{32\pi^2 v^2} \operatorname{Str} \mathcal{M}^2$$
$$= \frac{1}{32\pi^2} \left(\frac{9}{4} g_2^2 + \frac{3}{4} g_1^2 + 6\lambda - 6\lambda_t^2 \right) \Lambda^2$$

• vanishing anomalous dimension of the Higgs mass parameter $\gamma_m(M_{pl}) = 0, \ m(M_{pl}) \neq 0$



 $m_{\rm H}$ < 150 GeV → random λ = O(1) excluded

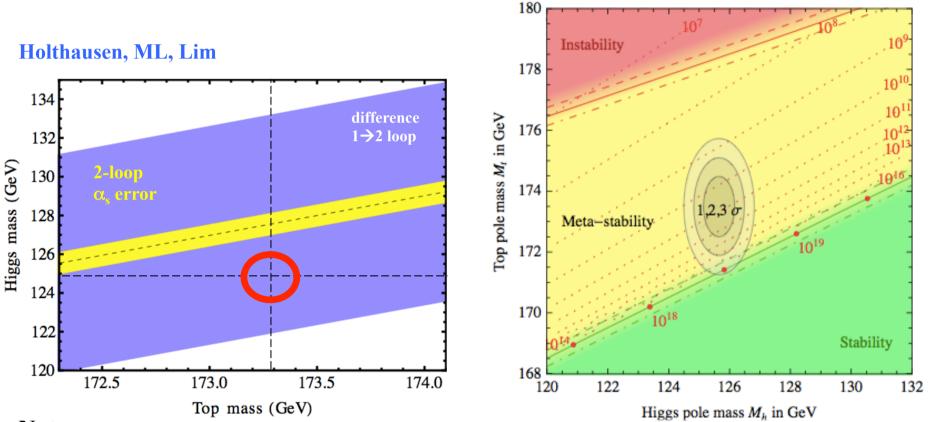
- Why do all these boundary conditions work?
 - suppression factors compared to random choice = O(1)
 - $\lambda = F(\lambda, g_i^2, ...)$ \rightarrow loop factors $1/16\pi^2$
 - top loops \rightarrow fermion loops \rightarrow factors of (-1)

any scenario which 'predicts' a suppressed (small/tiny) λ at M_{Planck} is OK
 more precision -> selects options ; e.g. γ_m=0 now ruled out

SCALARS 2013, Warsaw

Is the Higgs Potential at M_{Planck} flat?

Buttazzo, Degrassi, Giardino, Giudice, Sala, Salvio, Strumia



Notes:

- remarkable relation between weak scale, m_t , couplings and $M_{Planck} \leftarrow \rightarrow$ precision
- strong cancellations between Higgs and top loops
 - \rightarrow very sensitive to exact value and error of $m_{H_s} m_{t_s} \alpha_s = 0.1184(7)$
- higher orders, thresholds (low, high), ... **>** important: watch central values & errors

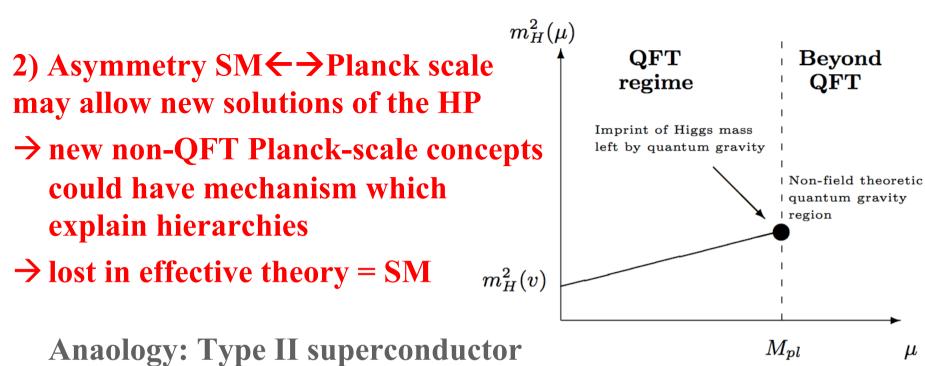
Interpretations of special Conditions: E.g. $\lambda(M_{Planck}) = 0$

λφ⁴ → 0 at the Planck scale → no Higgs self-interaction (V is flat)
 → m_H at low E radiatively generated - value related to m_t and g_i
 → SM emdedded directly into gravity ...!?

- What about the hierarchy problem?

- → GR is different: Non-renormalizable!
- → requires new concepts beyond QFT/gauge theories: ... ?
- → BAD: We have no facts which concepts are realized by nature
- → Two GOOD aspects:
- 1) QFTs cannot explain absolute masses and couplings

 QFT embeddings = shifting the problem only to the next level
 → new concepts beyond QFT might explain absolute values



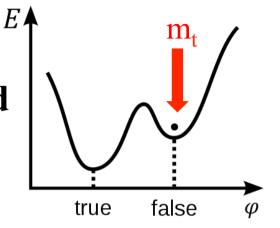
Ginzburg-Landau effective QFT $\leftarrow \rightarrow$ BCS theory

 $E \approx \alpha |\phi|^2 + \beta |\phi|^4 + \cdots \quad \leftarrow \Rightarrow \alpha, \beta,$ dynamical details lost

→ Important consequence of this scenario: no intermediate QFT scales ← → hierarchy problem back (separation of two scalars unnatural in QFT)

What if the SM were metastable?

- ➔ for large m_t the Higgs potential has two minima. If m_t > stability bound
- EW (false, required, local, metastable)
- "true" (deeper, global minimum)



- 1st bubble of true vacuum in U grows (surface vs. volume)
- mechanisms producing a 1st bubble in the Universe: $r\sim 1/m_{\rm H}$
 - → random collission of high energy cosmic rays
 - \rightarrow metastability (slightly negative λ) is OK (yellow region)
- do other (faster) mechanisms exist?
 - → maybe some intelligent form of life did already collide somewhere particles to form a critical bubble...?

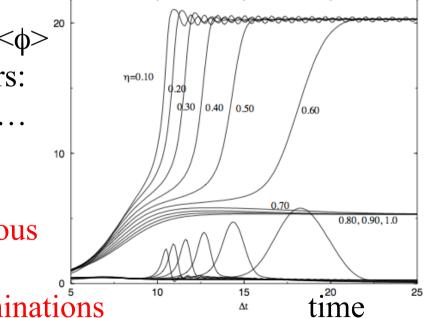
The dynamics of metastability:

- the bubble discussion ignores thermal cool-down, i.e. how/why we ended up in the (metastable) EW vacuum
- F 2nd order \Rightarrow metastability $T > T_c$ $T = T_c$ (ϕ)
- calculate thermal evolution of fluctuations
 and of field expectation value in cooling Universe → Langevin eqs.
 → does the fluctuating field fall into EW or global (wrong) vacuum?
 Bergerhoff, ML, Weiser

The answer depends on exact parameters:

- correct vacuum \rightarrow bubble discussion...
- wrong vacuum → always instable!
- SM metastability potentially dangerous
 or avoid it: embedding into...

 \rightarrow importance of precise m_H, m_t determinations



Embedding the SM

Remember: The SM does not exist without some embedding triviality/vacuum stab. \rightarrow scale Λ required \rightarrow cannot be ignored!

Embedding into which concept? -> two options:

some new concept beyond d=4 QFT
 some d=4 QFT

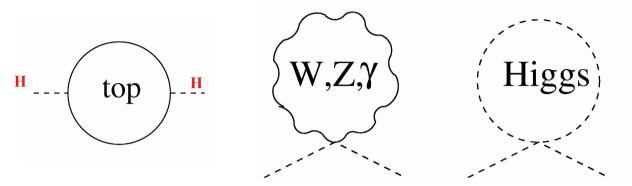
The $\lambda(M_{Planck})=0$ scenario above was along route #1 Most work over many years was along route #2:

- add representations
- extended gauge groups with and without GUTs
- include SUSY: MSSM, NMSSM, ..., SUSY GUTs
- hidden (gauge) sectors, mirror symmetry, ...

➔ runs into the gauge hierarchy problem

The naïve Hierarchy Problem

- Naive version: Higgs mass grows with cutoff scale Λ



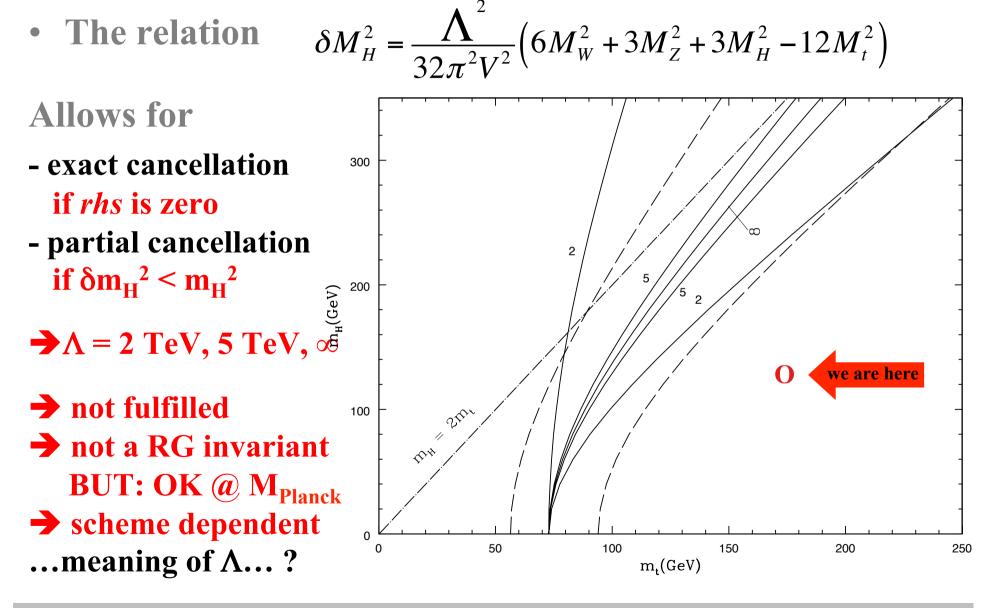
$$\delta M_{H}^{2} = \frac{\Lambda^{2}}{32\pi^{2}V^{2}} \left(6M_{W}^{2} + 3M_{Z}^{2} + 3M_{H}^{2} - 12M_{t}^{2} \right) \simeq \mathbf{O}(\Lambda^{2}/4\pi^{2})$$

m_H ≤ 200 GeV requires Λ ~ TeV → new physics at TeV scale ***OR***: you must explain → How can m_H be O(100 GeV) if Λ is huge ?

BUT: What does Λ mean for a renormalizable theory?

M. Lindner, MPIK

A side Story: The Veltman Condition



The Hierarchy Problem: Specify Λ

- Renormalizable QFTs with two scalars φ, Φ with masses m, M and a hierarchy m << M
- These scalars must interact since $\phi^+\phi$ and $\Phi^+\Phi$ are singlets
 - $\rightarrow \lambda_{mix}(\varphi^+\varphi)(\Phi^+\Phi)$ must exist in addition to φ^4 and Φ^4
- Quantum corrections ~M² drive both masses to the (heavy) scale
 two vastly different scalar scales are generically unstable

Therefore: If the SM Higgs field exists

- → problem: embedding with a 2nd scalar with much larger mass
- → solutions:

a) new scale @TeV

b) protective symmetry (SUSY) @TeV

 \rightarrow LHC !

Remark: SUSY & gauge unification \rightarrow SUSY GUT \rightarrow

 \rightarrow doublet-triplet splitting problem \rightarrow hierarchy problem back

SM Embedding Directions

Recap.: Embedding options (and some examples) at scale Λ

BUT: Maybe there is another way out: conformal symmetry (CS)

The SM has almost CS

$$V(\Phi^{+}\Phi) = -\lambda^{2}\Phi^{+}\Phi + \frac{\lambda}{2} \left(\Phi^{+}\Phi\right)^{2}$$
$$\rightarrow \underline{\sim} 0 @ M_{\text{Planck}}$$

Conformal Symmetry as Protective Symmetry

- Exact (unbroken) CS

- \rightarrow absence of Λ^2 and $\ln(\Lambda)$ divergences
- → no preferred scale and therefore no scale problems

- Conformal anomaly: Quantum effects break CS

- → explicit breaking of CS → anomaly induced spontaneous EWSB
- → CS breaking \leftarrow → β -functions \leftarrow → $\ln(\Lambda)$ divergences
- **BUT:** maybe CS still forbids Λ^2 divergences **Bardeen**
- Conformal anomaly \rightarrow no symmetry preserving regularization
- cutoff $\rightarrow \Lambda^2$ terms but violates CS explicitly \rightarrow Ward Identity
- dimensional regularization gives no Λ^2 terms only ln(Λ)

IMPORTANT CONSEQUENCE: The conformal limit of the SM (or extensions) may have no hierarchy problem!

Realizing this Idea

This would conceptually realize the idea, but: Higgs too light and the idea does not work for m_t> 79 GeV

→ Other realizations:

A) SM singlets

B) embeddings of the SM gauge group into larger groupsC) orthogonal (hidden) sectors

Realizing this Idea: Left-Right Extension

M. Holthausen, ML, M. Schmidt

Radiative SB in conformal LR-extension of SM

(use isomorphism SU(2) \times SU(2) \sim Spin(4) \rightarrow representations)

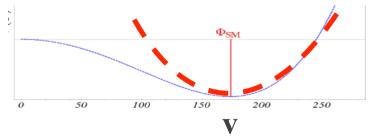
particle	parity \mathcal{P}	\mathbb{Z}_4	$\operatorname{Spin}(1,3) \times (\operatorname{SU}(2)_L \times \operatorname{SU}(2)_R) \times (\operatorname{SU}(3)_C \times \operatorname{U}(1)_{B-L})$
$\mathbb{L}_{1,2,3} = \left(\begin{array}{c} L_L \\ -\mathrm{i}L_R \end{array}\right)$	$P\mathbb{PL}(t,-x)$	$L_R \rightarrow iL_R$	$\left[\left(\underline{\underline{1}} , \underline{\underline{0}} \right) (\underline{\underline{2}}, \underline{\underline{1}}) + \left(\underline{\underline{0}}, \underline{\underline{1}} \right) (\underline{\underline{1}}, \underline{\underline{2}}) \right] (\underline{\underline{1}}, -1)$
$\mathbb{Q}_{1,2,3} = \left(egin{array}{c} Q_L \ -\mathrm{i}Q_R \end{array} ight)$	$P\mathbb{PQ}(t,-x)$	$Q_R \rightarrow -\mathrm{i} Q_R$	$\left[\left(\underline{\frac{1}{2}},\underline{0}\right)(\underline{2},\underline{1})+\left(\underline{0},\underline{\frac{1}{2}}\right)(\underline{1},\underline{2})\right]\left(\underline{3},\frac{1}{3}\right)$
$\Phi = \left(egin{array}{cc} 0 & \Phi \ - ilde{\Phi}^\dagger & 0 \end{array} ight)$	$\mathbb{P}\Phi^{\dagger}\mathbb{P}(t,-x)$	$\Phi \to \mathrm{i} \Phi$	$(\underline{0},\underline{0})$ $(\underline{2},\underline{2})$ $(\underline{1},0)$
$\Psi = \left(egin{array}{c} \chi_L \ -\mathrm{i}\chi_R \end{array} ight)$	$\mathbb{P}\Psi(t,-x)$	$\chi_R \rightarrow -\mathrm{i}\chi_R$	$(\underline{0},\underline{0})\left[(\underline{2},\underline{1})+(\underline{1},\underline{2})\right](\underline{1},-1)$

→ the usual fermions, one bi-doublet, two doublets
 → a Z₄ symmetry
 → no scalar mass terms ← → CS

→ Most general gauge and scale invariant potential respecting Z4

$$\begin{split} \mathcal{V}(\Phi,\Psi) &= \frac{\kappa_1}{2} \left(\overline{\Psi} \Psi \right)^2 + \frac{\kappa_2}{2} \left(\overline{\Psi} \Gamma \Psi \right)^2 + \lambda_1 \left(\mathrm{tr} \Phi^{\dagger} \Phi \right)^2 + \lambda_2 \left(\mathrm{tr} \Phi \Phi + \mathrm{tr} \Phi^{\dagger} \Phi^{\dagger} \right)^2 + \lambda_3 \left(\mathrm{tr} \Phi \Phi - \mathrm{tr} \Phi^{\dagger} \Phi^{\dagger} \right)^2 \\ &+ \beta_1 \, \overline{\Psi} \Psi \mathrm{tr} \Phi^{\dagger} \Phi + f_1 \, \overline{\Psi} \Gamma [\Phi^{\dagger}, \Phi] \Psi \,, \end{split}$$

- \rightarrow calculate V_{eff}
- → Gildner-Weinberg formalism (RG improvement of flat directions)
 - anomaly breaks CS
 - spontaneous breaking of parity, Z₄, LR and EW symmetry
 - m_H << v ; typically suppressed by 1-2 orders of magnitude Reason: V_{eff} flat around minimum ←→ m_H ~ loop factor ~ 1/16π²
 - everything works nicely...



→ requires moderate parameter adjustment for the separation of the LR and EW scale... PGB...?

SCALARS 2013, Warsaw

More Scalars + Conformal Symmetry

- SM scalars Φ plus some new scalar ϕ (or more scalars)
- CS \rightarrow no scalar mass terms
- the scalars interact: λ_{mix}(φ⁺φ)(Φ⁺Φ) must exist
 ⇒ a condensate in the φ direction can lead to <φ⁺φ> > 0
 λ_{mix} ⇒ effective mass term for Φ
- CS anomalous ... \rightarrow broken by quantum effects \rightarrow only $\ln(\Lambda)$
- Note that this opens many other possibilities:
 - ϕ could be an effective field of some hidden sector DSB
 - further particles could exist in hidden sector; e.g. confining...
 - extra U(1) potentially problematic $\leftarrow \rightarrow$ U(1) mixing
 - avoid Yukawas which couple visible and hidden sector

→ phenomenologically safe since NP comes only via portal

Realizing the Idea: Other Directions

SM + extra singlet: Φ, φ

Nicolai, Meissner Farzinnia, He, Ren Foot, Kobakhidze, Volkas

SM + extra SU(N) with new N-plet in hidden sector

Ko

Carone, Ramos Holthausen, Kubo, Lim, ML (to appear...)

•••

SM + ...

•••

Since the SM-only version does not work → observable effects:

- Higgs coupling to other scalars (singlet, hidden sector, ...)
- dark matter candidates $\leftarrow \rightarrow$ hidden sectors & Higgs portals
- consequences for neutrino masses

Summary

SM works perfectly – no signs of new physics

The standard hierarchy problem suggests TeV scale physics ... which did (so far...) not show up

Revisit how the hierarchy problem may be solved

- Embedding into new concepts beyond QFT at M_{planck} $\leftarrow \rightarrow$ might be connected to $\lambda(M_{Planck}) = 0$?
- Embeddings into QFTs with classical conformal symmetry
 - \rightarrow SM: Coleman Weinberg effective potential excluded
 - \rightarrow extended versions: singlets, SM=subgroup, hidden sectors
 - → implications for Higgs couplings, dark matter, neutrinos
 → testable consequences @ LHC, DM search, neutrinos