SEARCHES FOR LOW-MASS HIGGS AND DARK BOSONS AT BABAR

Alessandra Filippi

INFN Torino

On behalf of the BABAR Collaboration

Scalars2013 Conference – Warsaw, September 12-16, 2013

Introduction

- The Standard Model scenario suffers from quadratic divergences and several models have been suggested to solve the problem
- In these models additional fields are introduced, and low-mass Higgs' bosons (in the GeV/c² mass range), and gauge bosons, are possible
- The search for such particles can be fruitfully exploited at lowenergy/high luminosity e⁺e⁻ machines (ex. B factories)
 - Constraints on parameter space can help understanding the most recent experimental observation of SM Higgs' boson
- BaBar is pursuing a complete program to search for such states in several decay modes (leptons, hadrons, invisible) in
 - radiative decays of $\Upsilon(nS)$ resonances (Wilczek)
 - Higgs-strahlung (and pair production) processes from e⁺e[−]

SEARCHES FOR LOW-MASS HIGGS

TM & © Nelvana

Theoretical motivations

- Among the models which include the possibility of a light Higgs: NMSSM
 - Solves the hierarchy problem
 - Adds to MSSM a total of 2 CP-odd + 3 CP-even + 2 charged Higgs
 - Lightest CP-odd Higgs (A⁰): mixing of a singlet CP-odd singlet Higgs' field and the CP-odd scalar doublet of MSSM:
 - $A^0 = \cos\theta_A a_{MSSM} + \sin\theta_A a_{SM}$
 - Lightest Higgs: mass < 2m_b
 - Production: radiative decays $\Upsilon(nS) \rightarrow \gamma A^0$ (n=1,2,3)

can have large branching fractions, up to 10⁻³

– A^0 decays: into ff with BF depending on tan β and m_{A^0}

$$BR(A^{0} \to f\overline{f}) \propto \cos\theta_{A}m_{f}^{2} / \tan^{2}\beta$$
$$BR(A^{0} \to f\overline{f}) \propto \cos\theta_{A}m_{f}^{2} \tan^{2}\beta$$

Up-type fermions: u, c, t, $\nu_{e}, \nu_{\mu}, \nu_{\tau}$

Down-type fermions: d, s, b, e, μ , τ

A⁰ searches at BaBar

 Υ (2S,3S) radiative decays

 $_{\sim} \Upsilon(2S,3S) \rightarrow \gamma A^{\circ}$ ¥(3S) $E_{\gamma}^{*} = \frac{m_{\Upsilon}^2 - m_A^2}{2m_{\pi}}$

- Search for a monochromatic photon in the recoil mass spectrum
 - $\Upsilon(2S,3S) \rightarrow \gamma A^0; A^0 \rightarrow \mu^+ \mu^-$ PRL103, 081803 (2009)
 - $\Upsilon(3S) \rightarrow \gamma A^0; A^0 \rightarrow \tau^+ \tau^-$ PRL103, 181801 (2009)
 - $\Upsilon(2S,3S) \rightarrow \gamma A^0$; $A^0 \rightarrow$ hadrons PRL107, 221803 (2011)
 - $\Upsilon(2S,3S) \rightarrow \gamma A^0$; $A^0 \rightarrow$ invisible arXiv: 0808.0017

Method: scan as a function of m_{A_0} of its production×decay yield by means of extended unbinned likelihood fits

 Υ (1S) radiative decays

- Υ (1S) selected by tagging the dipion in $\Upsilon(2,3S) \rightarrow \pi^+\pi^-\Upsilon(1S)$ transitions
- Less background, reduced using missing mass and dipion recoil mass
- Monochromatic photon in $\Upsilon(1S)$ rest frame
 - $\Upsilon(1S) \rightarrow \gamma A^0$; $A^0 \rightarrow \text{invisible}$ PRL107, 021804 (2011)
 - $\Upsilon(1S) \rightarrow \gamma A^0; A^0 \rightarrow \mu^+ \mu^-$
- This talk $\Upsilon(1S) \rightarrow \gamma A^0; A^0 \rightarrow \tau^+ \tau^-$ arXiv:1210 5660 ~~ arXiv:1210.5669 accepted by PRD-RC
 - $\Upsilon(1S) \rightarrow \gamma A^0; A^0 \rightarrow gg \text{ or } S\overline{S}$ PRD88, 031701 (2013)

Υ (2S,3S) $\rightarrow \pi^+\pi^-\Upsilon$ (1S), Υ (1S) $\rightarrow \gamma A^0, A^0 \rightarrow$ PRD87, 031102 (2013)

- Substantial background reduction as compared to Υ (2S,3S) direct rad. decays
- Sample: 93M Υ(3S) + 117M Υ(2S)
- Selection: one photon $E^* > 200 \text{ MeV} + 4$ Events/(0.20 GeV/c²) charged tracks: at least one μ + dipion from Υ (2S,3S) $\rightarrow \pi^+\pi^-\Upsilon$ (1S)
 - Additional soft γ 's accepted, E* < 200 MeV
 - All tracks from same vertex (e^+e^- IP)
 - Beam-energy constraints on $\Upsilon(2S,3S)$
 - improve A^0 resolution (2-9 MeV/c²)
- Backgrounds:
 - Continuum: QED $e^+e^- \rightarrow \mu^+\mu^-$
 - Peaking: ISR production of ρ^0 , $\psi(2S)$ and J/ ψ (only in Υ (3S) sample) $\Rightarrow J/\psi$ excluded
- Yield extracted from $m_{R} = \sqrt{m_{\mu\mu}^2 4m_{\mu}^2}$
 - Max significance:
 - $\Upsilon(2S)$: $S = 3.62\sigma @ 7.85 \text{ GeV/c}^2$
 - Υ(3S): *S* = 2.97σ @ 3.78 GeV/c²
 - Combined: *S* = 3.24σ @ 3.88 GeV/c²
 - **Compatible with null hypothesis**

$\Upsilon(2S,3S) \rightarrow \pi^+ \pi^- \Upsilon(1S), \Upsilon(1S) \rightarrow \gamma A^0, A^0 \rightarrow \mu^+ \mu^-$ PRD87, 031102 (2013)

- 90% C.L. Bayesian upper limits in the range 0. $212 \le m_{A_0} \le 9.20 \text{ GeV/c}^2$
 - For the combined dataset:

 $B(Y(1S) \to \gamma A^0) \times B(A^0 \to \mu^+ \mu^-) = (0.29 - 9.7) \times 10^{-6}$

- Improvement of a factor 2-3 of the previous limits for m_{A0} < 1.2 GeV/c²
- Comparable to former BaBar results for $1.20 \leq m_{A^0} \leq \ 3.6 \ \text{GeV/c}^2 \ (\text{PRD103,081803(2009)})$
- Can be combined with direct Υ(2S, 3S) results to set a limit to the *effective* Yukawa Higgs-b quark coupling:

$$\frac{B(Y(nS) \rightarrow \gamma A^0)}{B(Y(nS) \rightarrow \ell^+ \ell^-)} = \frac{f_Y^2}{2\pi\alpha} \left(1 - \frac{m_{A^0}^2}{m_{Y(ns)}^2}\right)$$

• For $m_{A_0} \le 9.20 \text{ GeV/c}^2$:

$$f_{\rm Y}^2 \times B(A^0 \to \mu^+ \mu^-) = (0.29 - 40) \times 10^{-6}$$

Υ (2S) $\rightarrow \pi^+\pi^-\Upsilon$ (1S), Υ (1S) $\rightarrow \gamma A^0, A^0 \rightarrow \tau^+\tau^$ arXiv:1210.5669 (2012), accepted by PRD-RC

- Sample: 98M Υ(2S)
- Selection: one photon E* > 200 MeV + 4 charged tracks: at least one lepton (τ decay, 5 combinations) + tagging dipion
 - Additional soft γ 's accepted, E* > 30 MeV
- Backgrounds:
 - Continuum: QED $e^+e^- \rightarrow \gamma \tau^+ \tau^- + 2\gamma$ events
 - Peaking: radiative leptonic $\Upsilon(1S)$ decays
- Yield extracted from recoil mass of the dipion system (Υ(1S)) and missing mass (Υ(1S) γ):
 - Scan range in two intervals with different optimizations:
 - 3.6 $\leq m_{A0} \leq$ 8 GeV/c² (Low)
 - $8.0 \le m_{A^0} \le 9.2 \text{ GeV/c}^2$ (High)
 - Max significance:
 - $S = 2.7\sigma @ 6.36 \text{ GeV/c}^2$
 - S = 3.0σ @ 8.93 GeV/c²
 - No significant signal observed

 $\Upsilon(2S) \rightarrow \pi^+ \pi^- \Upsilon(1S), \Upsilon(1S) \rightarrow \gamma A^0, A^0 \rightarrow$ arXiv:1210.5669 (2012), accepted by PRD-RC 90% C.L. Bayesian upper limit in the range Upper Limit B($A^0 \rightarrow \tau^+ \tau^-$) $3.6 \le m_{A0} \le 9.2 \text{ GeV/c}^2$ €10* $B(Y(1S) \rightarrow \gamma A^0) \times B(A^0 \rightarrow \tau^+ \tau^-) = (0.9 - 13) \times 10^{-5}$ Combined with Υ (3S) results to set a limit to 104 the Yukawa Higgs-b quark coupling: $\frac{B(Y(nS) \to \gamma A^0)}{B(Y(nS) \to \ell^+ \ell^-)} = \frac{g_b^2 G_F m_b^2}{\sqrt{2\pi\alpha}} \mathcal{F}_{QCD} \left(1 - \frac{m_{A^0}^2}{m_{Y(ns)}^2} \right)$ $g_{\lambda}^{2} \times B(\Lambda^{0} \rightarrow \pi) \text{ UL } @ 90\% \text{ C.L}$ BaBar Y(1S)→ y A[®] BaBar Y(3S)→γA[®] BaBar Combined For $m_{A0} \le 9.2 \text{ GeV/c}^2$: NMSSM CLEO Y(1S) $\rightarrow \gamma A^{0}$ $g_b^2 \times B(A^0 \to \tau^+ \tau^-) = (0.09 - 1.9)$ $g_{\rm b} = \tan\beta \cos\theta_{\rm A} \Longrightarrow$ much of the parameter 10-1 space preferred by NSSM (>1) is ruled out m_{A0} (GeV)

Υ (2S,3S) $\rightarrow \pi^+\pi^-\Upsilon$ (1S), Υ (1S) $\rightarrow \gamma A^0, A^0 \rightarrow gg, S\overline{S}$ PRD88, 031701 (2013)

- Sample: 122M Υ(3S) + 99M Υ(2S)
- Selection: one photon E* > 200 MeV + 2 charged tracks (dipion from Υ(2S) transitions) + hadronic system from A⁰ decay products (26 reactions)
 - PID of K, π , p (s \overline{s} : reactions with at least 2K)
 - A⁰ reconstruction: exclude 2-body FS
 - A CP-odd Higgs cannot decay in 2 pseudoscalars
 - Beam-energy constraints on $\Upsilon(2S)$
- Backgrounds:
 - $\Upsilon(1S) \rightarrow ggg, \rightarrow \gamma gg$ with gluon hadronization
- Yield extracted from background subtracted mass spectrum
 - $\quad \text{Range: } 0.5 < m_{A^0} < 9 \; \text{GeV/c}^2$
 - Largest upward fluctuations:
 - gg: 2.7σ @ 8.13 GeV/c²
 - ss: 3.2σ @ 8.63 GeV/c²

# Channel	# Channel
$1 \pi^{+}\pi^{-}\pi^{0}$	$14 K^+ K^- \pi^+ \pi^-$
$2 \pi^{+}\pi^{-}2\pi^{0}$	$15 K^+ K^- \pi^+ \pi^- \pi^0$
$3 \ 2\pi^+2\pi^-$	$16 K^{\pm}K^{0}_{s}\pi^{\mp}\pi^{+}\pi^{-}$
4 $2\pi^+ 2\pi^- \pi^0$	$17 K^+ K^- \eta$
$5 \ \pi^+\pi^-\eta$	$18 K^+ K^- 2 \pi^+ 2 \pi^-$
6 $2\pi^+2\pi^-2\pi^0$	19 $K^{\pm}K^{0}_{s}\pi^{\mp}\pi^{+}\pi^{-}2\pi^{0}$
7 $3\pi^+3\pi^-$	$20 K^+ K^- 2\pi^+ 2\pi^- \pi^0$
8 $2\pi^{+}2\pi^{-}\eta$	$21 \ K^+ K^- 2\pi^+ 2\pi^- 2\pi^0$
9 $3\pi^+3\pi^-2\pi^0$	$22 K^{\pm} K_s^0 \pi^{\mp} 2\pi^+ 2\pi^- \pi^0$
$10 4\pi^+ 4\pi^-$	$23 K^+K^-3\pi^+3\pi^-$
$11 \ K^+ K^- \pi^0$	$24 \ 2K^+2K^-$
$12 \ K^{\pm} K^{0}_{S} \pi^{\mp}$	$25 \ p\bar{p}\pi^0$
$13 K^+ K^- 2\pi^0$	$26 \ p\bar{p}\pi^{+}\pi^{-}$

Υ (2S,3S) $\rightarrow \pi^+\pi^-\Upsilon$ (1S), Υ (1S) $\rightarrow \gamma A^0$, $A^0 \rightarrow gg$, SS PRD88, 031701 (2013)

- How often such a statistical fluctuation can occur in simulated experiments:
 - gg: 86%
 - ss: 59%
 - No evidence for A⁰ signal in the hadronic mass spectra, nor other hadronic resonances

• 90% C.L. Bayesian upper limits in the range $0.5 < m_{A0} < 9. \text{ GeV/c}^2$

$$B(Y(1S) \rightarrow \gamma A^0) \times B(A^0 \rightarrow gg) = 10^{-6} - 10^{-2}$$

$$B(Y(1S) \rightarrow \gamma A^0) \times B(A^0 \rightarrow s\bar{s}) = 10^{-5} - 10^{-3}$$

The limits are less stringent than what obtained in the leptonic decays

Parameter space excluded by the data

 Upper limits for A⁰ coupling to b-quarks from several Babar measurements

 $(g_b = \cos\theta_A \tan\beta)$

The boxes indicate the ranges permitted by the experimental measurements for different massed

- The space above the upper edge of the boxes is excluded
- Strong constraints on the parameter space

SEARCHES FOR DARK BOSONS

Dark sector gauge bosons: search motivations

- Several clear experimental evidences for the existence of Dark Matter from terrestrial and satellite experiments
 - PAMELA, INTEGRAL, ATIC, DAMA/LIBRA, CREST, HESS, ...
 - 511 keV photon flux from the Galactic center (1-10 MeV e⁺/e⁻ source?)
 - Positron and electron fluxes (NO protons/antiprotons!)
 - Annual modulation signal
- These (+null) results can be thoroughly interpreted resorting to a new hidden U(1)_{DARK} gauge group which couples to U(1)_Y
 - Kinetic mixing of dark matter particles to SM ones through a dark photon: $\epsilon F^{\mu\nu} B_{\mu\nu}$
 - Small coupling **E**
 - Typical range: $10^{-6} \le \varepsilon \le 10^{-2}$
 - Gauge bosons produced in DM annihilation

- Massive dark photon A' generated via Higgs' mechanism (dark Higgs h' added to the theory)
 - Expected mass: at most few GeV/c², if coming from TeV/c² mass DM
 - Observable at B factories: low background environment

Dark sector gauge bosons: signatures

- Through the kinetic coupling the dark photon A' gets an effective charge by which it couples to SM fermions
 - Coupling strength: $\alpha' = \alpha \epsilon^2$
 - Large coupling to electrons and muons at low masses
- Light dark-Higgs boson
 - Decays into 2 dark bosons
 - $m_{h'} > 2 m_{A'}$: prompt decay
 - m_{h'} < m_{A'}: prompt or displaced
 - Higgs' production: Higgs-strahlung $e^+e^- \rightarrow A'h', h' \rightarrow A'A'$

Batell et al, PRD79, 115008 (2009)

1.00 e'e Decay BF 0.50 hadrons 0.20 0.10 $\mu^{\dagger}\mu^{\dagger}$ 0.05 $\tau^+\tau^-$ 0.02 0.01 2.0 0.1 0.2 0.5 1.0 5.0 10.0m_{A'} (GeV)

dark photon branching fraction

16

Dark Higgs searches at BaBar PRL108, 211801 (2012)

- Higgs-strahlung:
 - only suppressed by one power in ϵ
- Constraint: m_{h'} > 2 m_{A'}
- Ranges:
 - $0.8 \leq m_{h^\prime} \leq ~10~GeV/c^2$
 - $0.25 \leq m_{A'} \leq 3 \text{ GeV/}c^2$
- Data: full dataset, 516 fb⁻¹
- Selection:
 - Exclusive mode: 6 fermions in pairs of opposite charge/flavor
 - Full reconstruction of the 3A'
 - similar masses
 - e⁺e[−] c.m. energy constraint
 - Same vertex (IP)
 - Inclusive mode: 2 lepton pairs for A' + X
 - 2 similar masses for A'
 - 3rd A' from missing mass
- Background: wrong sign combinations
- 6 events found (each: 3 entries)

No event by 6 leptons Signal consistent with background

Dark Higgs searches at BaBar PRL108, 211801 (2012)

- 90% C.L. Bayesian upper limit on the production cross section: (10-100) ab
- 90% C.L Bayesian upper limit on α'ε² as a function of m_{h'} and m_{A'}: 10⁻¹⁰-10⁻⁸

- $\alpha' = \alpha$: limits on the mixing strength ϵ^2
 - **10**⁻⁴-**10**⁻³
 - One order of magnitude smaller than current bounds
 - substantial improvement if a light dark Higgs (< 5-7 GeV/c²) exists

Limit on $\varepsilon^2 = \alpha' / \alpha$ assuming $\alpha_n = \alpha_{m}$ for various Higgs mass

CONCLUSIONS

Summary and outlook

- Low energy e⁺e⁻ colliders provide a clean environment to look for MeV-GeV Higgs' and dark sector bosons
- BaBar searched for evidence of two kinds of light Higgs' particles:
 - Light Higgs favored by NMSSM
 - Comprehensive searches using a variety of $\Upsilon(nS)$ decay channels
 - Significant constraints on NMSSM parameter space
 - Dark Higgs (and gauge bosons) suggested by dark sector models
 - Searches for signals from Higgs-strahlung
 - Constraints on the coupling parameters
 - No evidence observed so far
 - Upper limits O(10⁻⁶-10⁻⁵) on cascade branching fractions
 - Further searches still in progress
 - A^0 decaying in $\gamma\gamma$, $C\overline{C}$
 - Dark photon: $e^+e^- \rightarrow \gamma A'$; $A' \rightarrow e^+e^-$, $\mu^+\mu^-$, hadrons, invisible

BACKUP SLIDES

The BaBar experiment at PEP-II, SLAC

Summary of current A⁰ BF upper limits from BaBar

reaction	Upper limit (10 ⁻⁵) @ 90% CL	m _{A0} range (GeV/c²)	Reference
Υ(2S,3S) → γ A ⁰ , A ⁰ → $\mu^+\mu^-$	0.026 - 0.83 (Ƴ(2S)) 0.027 - 0.55 (Ƴ(3S))	0.212 – 9.3	PRL103, 081803 (2009)
Υ (1S) → γ A ⁰ , A ⁰ → μ ⁺ μ ⁻	0.028 - 0.97	0.212 – 9.3	PRD87, 031102 (2013)
Υ (3S) → γ A ⁰ , A ⁰ → τ ⁺ τ ⁻	1.5 - 16	4.03 - 10.10	PRL103, 181801 (2009)
Υ (1S) → γ A ⁰ , A ⁰ → τ ⁺ τ ⁻	0.9 - 13	3.6 - 9.2	arXiv:1210.5669 (2012)
Υ (2S,3S) \rightarrow γ A ⁰ , A ⁰ \rightarrow hadr	0.1 - 8	0.3 – 7	PRL107, 221803 (2011)
Υ (1S) $\rightarrow \gamma A^0$, $A^0 \rightarrow gg$	0.1 - 1000	0.5 – 9	PRD88, 031701 (2013)
Υ (1S) $\rightarrow \gamma A^0$, $A^0 \rightarrow s\bar{s}$	1-100	0.5 – 9	PRD88, 031701 (2013)
Υ (3S) → γ A ⁰ , A ⁰ → invisible	0.07 - 3.1	3 - 7.6	arXiv:0808.0017 (2008)
Υ(1S) → γ A ⁰ , A ⁰ → invisible	0.19 – 0.45 0.27 – 37	0 – 8 8 – 9.2	PRL107, 021804 (2011)

Limits on dark photon searches at BaBar

 All searches for a light Higgs can be re-interpreted looking for a spin 1 A' boson in its ff decay

Exclusion of almost all the "g-2 preferred" region