Cabibbo's dream

Belén Gavela

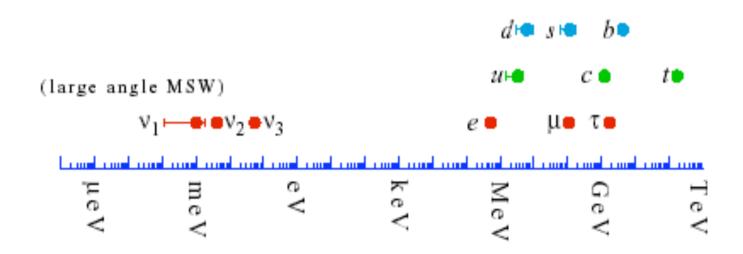
(Alonso, Gavela, D.Hernandez, Merlo, Rigolin) (Alonso, Gavela, Isidori, Maiani)

Neutrino masses and mixings from a minimal principle

Belén Gavela

(Alonso, Gavela, D.Hernandez, Merlo, Rigolin) (Alonso, Gavela, Isidori, Maiani)

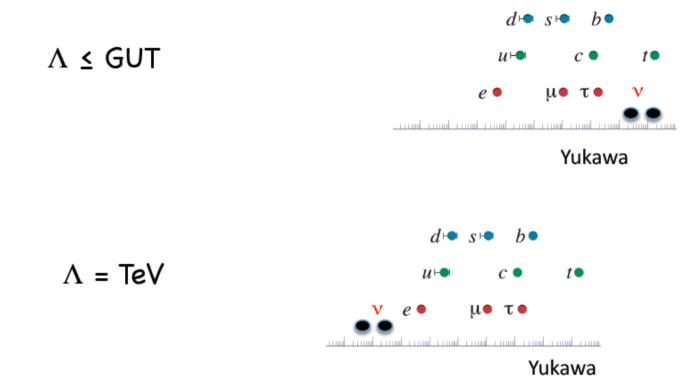
Neutrino light on flavour?



Neutrinos lighter because Majorana?

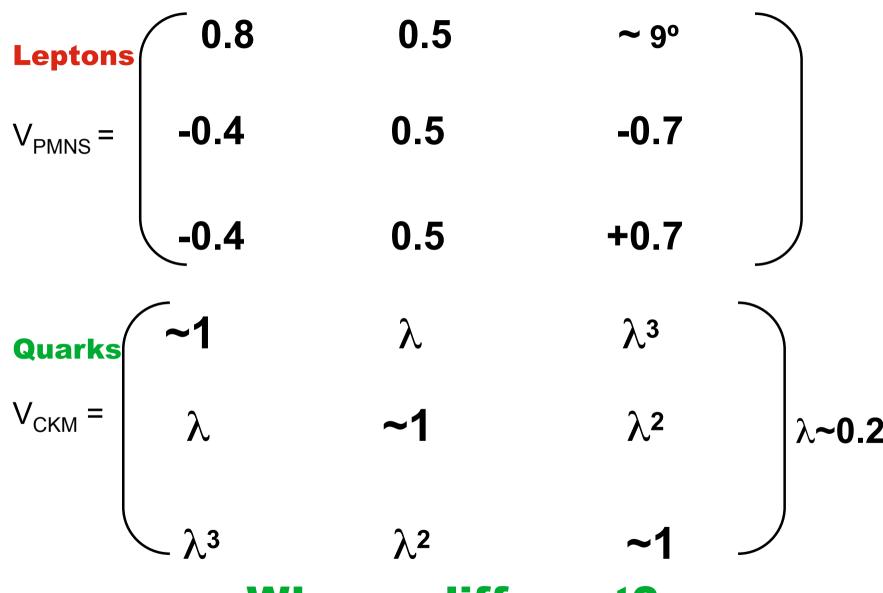
Within seesaw, the size of V Yukawa couplings is alike

to that for other fermions:



Pílar Hernandez drawings

Minkowski; Gell-Mann, Ramond Slansky; Yanagida, Glashow...

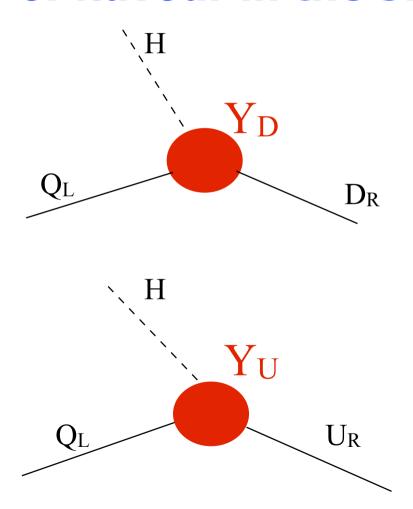


Why so different?

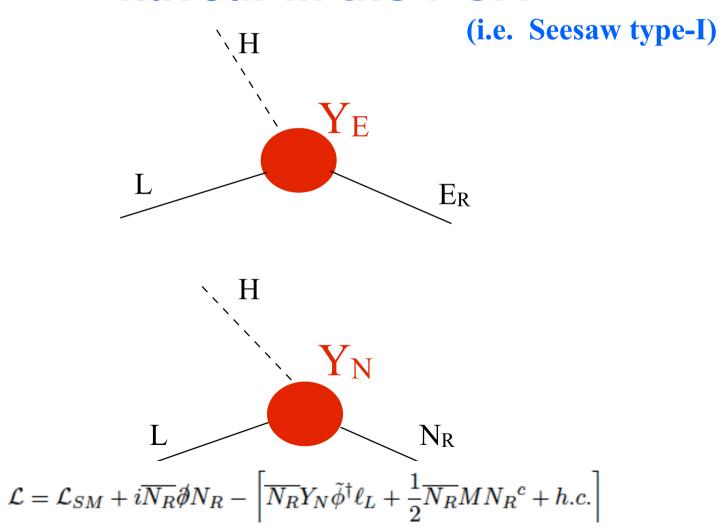
Perhaps also because v_s may be Majorana?

Dynamical Yukawas

Yukawa couplings are the source of flavour in the SM



Yukawa couplings are a source of flavour in the v-SM



May they correspond to dynamical fields (e.g. vev of fields that carry flavor)?

Instead of inventing an ad-hoc symmetry group, why not use the continuous flavour group suggested by the SM itself?

We have realized that the different pattern for quarks versus leptons

may be a simple consequence of the

continuous flavour group of the SM (+ seesaw)

We have realized that the different pattern for quarks versus leptons

may be a simple consequence of the

continuous flavour group of the SM (+ seesaw)

Our guideline is to use:

- maximal symmetry
- minimal field content

(Alonso, Gavela, D.Hernandez, Merlo, Rigolin)

Global flavour symmetry of the SM

* QCD has a global -chiral- symmetry in the limit of massless quarks. For n generations:

$$egin{align} \mathcal{L}_{\mathcal{QCD}}^{ ext{ iny fermions}} &= ar{\Psi}(iD\!\!\!/ - m)\Psi \,
ightarrow ar{\Psi}iD\!\!\!/ \Psi \, = \, \overline{\Psi_L}iD\!\!\!/ \Psi_L + \overline{\Psi_R}iD\!\!\!/ \Psi_R \ & SU(n)_L imes SU(n)_R imes U(1)'s \ \end{aligned}$$

* In the SM, fermion masses and mixings result from Yukawa couplings. For massless quarks, the SM has a global flavour symmetry:

Quarks

$$\mathscr{L}_{\mathsf{SM}}^{\mathsf{fermions}} = i \sum_{\psi = Q_L}^{D_R} \overline{\psi} \not\!\!D \psi$$
 $\mathbf{G}_{\mathsf{flavour}} = U(n)_{Q_L} imes U(n)_{U_R} imes U(n)_{D_R}$ [Georgi, Chivukula, 1987]

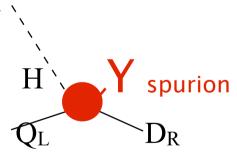
This continuous symmetry of the SM

G_{flavour} =
$$U(n)_{Q_L} \times U(n)_{U_R} \times U(n)_{D_R}$$

is phenomenologically very successful and

at the basis of Minimal Flavour Violation

in which the Yukawa couplings are only spurions H spurion



This continuous symmetry of the SM

G_{flavour} =
$$U(n)_{Q_L} \times U(n)_{U_R} \times U(n)_{D_R}$$

is phenomenologically very successful and

at the basis of Minimal Flavour Violation .

in which the Yukawa couplings are only spurions
$$H$$
 spurion D_R

$$\frac{\mathbf{Y}_{\alpha\beta}^{+}\,\mathbf{Y}_{\delta\gamma}}{\mathbf{\Lambda}_{\mathbf{f}}^{2}}\,\,\mathbf{\overline{Q}}_{\alpha}\,\gamma_{\mu}\mathbf{Q}_{\beta}\,\mathbf{\overline{Q}}_{\gamma}\,\gamma^{\mu}\,\mathbf{Q}_{\delta}$$

One step further:

dynamical Ys

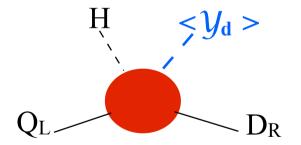
Quarks

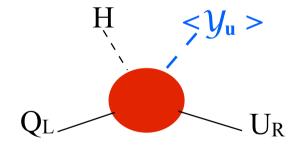
For this talk:

each Y_{SM} -- >one single field y

$$Y_{SM} \sim \frac{\langle y \rangle}{\Lambda_f}$$

quarks:





Anselm+Berezhiani 96; Berezhiani+Rossi 01... Alonso+Gavela+Merlo+Rigolin 11...

 $G_{flavour} = SU(3)_{QL} \times SU(3)_{UR} \times SU(3)_{DR} \dots$

For this talk:

each Y_{SM} -- >one single field y

$$Y_{SM} \sim \frac{\langle y \rangle}{\Lambda_f}$$

quarks:

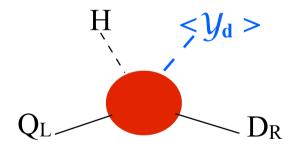
 $G_{flavour} = SU(3)_{QL} \times SU(3)_{UR} \times SU(3)_{DR} \dots$

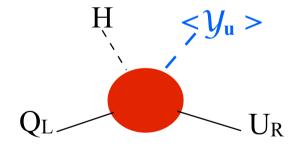
$G_{flavour} = SU(3)_{QL} \times SU(3)_{UR} \times SU(3)_{DR} \dots$

$$y_d \sim (3,1,3)$$

$$y_u \sim (3, \overline{3}, 1)$$

That is, two dynamical scalars





$$\mathcal{Y}_{d} \sim (3, \bar{3}, 1)$$

$$y_u \sim (3, 1, \bar{3})$$

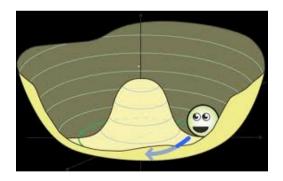
$$\left| \frac{\langle \mathcal{Y}_d \rangle}{\Lambda_f} = Y_D = V_{CKM} \begin{pmatrix} y_d & 0 & 0 \\ 0 & y_s & 0 \\ 0 & 0 & y_b \end{pmatrix} \right|, \quad \left| \frac{\langle \mathcal{Y}_u \rangle}{\Lambda_f} = Y_U = \begin{pmatrix} y_u & 0 & 0 \\ 0 & y_c & 0 \\ 0 & 0 & y_t \end{pmatrix} \right|.$$

$$\frac{\langle y_u \rangle}{\Lambda_f} = Y_U = \begin{pmatrix} y_u & 0 & 0 \\ 0 & y_c & 0 \\ 0 & 0 & y_t \end{pmatrix}$$

Flavour Symmetry Breaking

Spontaneous breaking of flavour symmetry dangerous

To prevent Goldstone Bosons the symmetry can be Gauged



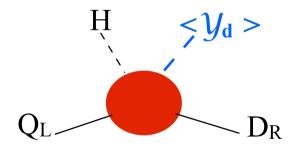
[Grinstein, Redi, Villadoro Guadagnoli, Mohapatra, Sung Feldman]

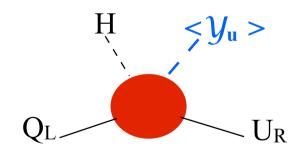
$G_{flavour} = SU(3)_{QL} \times SU(3)_{UR} \times SU(3)_{DR} \dots$

$$y_d \sim (3,1,3)$$

$$y_u \sim (3, \overline{3}, 1)$$

That is, two dynamical scalars





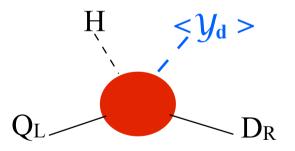
 $\mathbf{V}(\mathcal{Y}_{\mathbf{d}}, \mathcal{Y}_{\mathbf{u}})$?

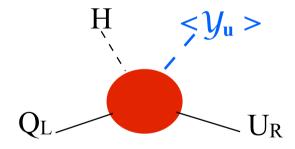
$G_{flavour} = SU(3)_{QL} \times SU(3)_{UR} \times SU(3)_{DR} \dots$

$$y_d \sim (3,1,3)$$

$$y_u \sim (3, \overline{3}, 1)$$

That is, two dynamical scalars





* Does the minimum of the scalar potential justify the observed masses and mixings?

$V(y_d, y_u)$

- * Invariant under the SM gauge symmetry
- * Invariant under its global flavour symmetry Gflavour

G_{flavour}=
$$U(3)_{QL} \times U(3)_{UR} \times U(3)_{DR}$$

The basis of the game is to find the minima of the invariants that you can construct out of Yukawa couplings

L. Michel+Radicati 70, Cabibbo+Maiani71 for the spectrum of masses

List of possible invariants for quarks: Hanani, Jenkins, Manohar 2010

The basis of the game is to find the minima of the invariants that you can construct out of Yukawa couplings

L. Michel+Radicati 70, Cabibbo+Maiani71 for the spectrum of masses

Cabibbo's dream

$$V(y_d, y_u)$$

- * Invariant under the SM gauge symmetry
- * Invariant under its global flavour symmetry Gflavour

G_{flavour}=
$$U(3)_{QL} \times U(3)_{UR} \times U(3)_{DR}$$

There are as many independent invariants I as physical variables

$$V(y_d, y_u) = V(I(y_d, y_u))$$

Minimization

a variational principle fixes the vevs of the Fields

$$\delta V = 0$$

$$\sum_{j} \frac{\partial I_{j}}{\partial y_{i}} \frac{\partial V}{\partial I_{j}} \equiv J_{ij} \frac{\partial V}{\partial I_{j}} = 0,$$

masses, mixing angles etc.

This is an homogenous linear equation; if the rank of the Jacobian $J_{ij} = \partial I_j/\partial y_i$, is:

Maximum: then the only solution is: $\frac{\partial V}{\partial I_j} = 0$,

Less than Maximum:

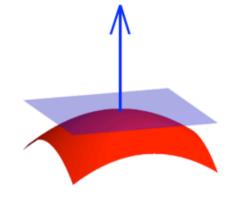
Boundaries

for a reduced rank of the Jacobian,

$$\det(J) = 0$$

there exists (at least) a direction δy_i for which a variation of the field variables does not vary the invariants

$$\delta I_j = \sum_i \frac{\partial I_j}{\partial y_i} \, \delta y_i = 0$$



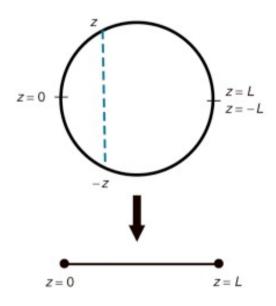
that is a Boundary of the I-manifold

[Cabibbo, Maiani, 1969]

Boundaries Exhibit Unbroken Symmetry [Michel, Radicati, 1969] (maximal subgroups)

Boundaries Exhibit Unbroken Symmetry

Extra-Dimensions Example



The smallest boundaries are extremal points of any function

[Michel, Radicati, 1969]

Bi-fundamental Flavour Fields

For quarks: 10 independent invariants (because 6 masses+ 3 angles + 1 phase) that we may choose as

$$I_{U} = \operatorname{Tr} \left[\mathcal{Y}_{U} \mathcal{Y}_{U}^{\dagger} \right], \qquad I_{D} = \operatorname{Tr} \left[\mathcal{Y}_{D} \mathcal{Y}_{D}^{\dagger} \right],$$

$$I_{U^{2}} = \operatorname{Tr} \left[\left(\mathcal{Y}_{U} \mathcal{Y}_{U}^{\dagger} \right)^{2} \right], \qquad I_{D^{2}} = \operatorname{Tr} \left[\left(\mathcal{Y}_{D} \mathcal{Y}_{D}^{\dagger} \right)^{2} \right],$$

$$I_{U^{3}} = \operatorname{Tr} \left[\left(\mathcal{Y}_{U} \mathcal{Y}_{U}^{\dagger} \right)^{3} \right], \qquad I_{D^{3}} = \operatorname{Tr} \left[\left(\mathcal{Y}_{D} \mathcal{Y}_{D}^{\dagger} \right)^{3} \right],$$

$$I_{U,D} = \operatorname{Tr} \left[\mathcal{Y}_{U} \mathcal{Y}_{U}^{\dagger} \mathcal{Y}_{D} \mathcal{Y}_{D}^{\dagger} \right], \qquad I_{U,D^{2}} = \operatorname{Tr} \left[\mathcal{Y}_{U} \mathcal{Y}_{U}^{\dagger} \left(\mathcal{Y}_{D} \mathcal{Y}_{D}^{\dagger} \right)^{2} \right],$$

$$I_{U^{2},D} = \operatorname{Tr} \left[\mathcal{Y}_{U} \mathcal{Y}_{U}^{\dagger} \left(\mathcal{Y}_{D} \mathcal{Y}_{D}^{\dagger} \right)^{2} \right], \qquad I_{(U,D)^{2}} = \operatorname{Tr} \left[\left(\mathcal{Y}_{U} \mathcal{Y}_{U}^{\dagger} \mathcal{Y}_{D} \mathcal{Y}_{D}^{\dagger} \right)^{2} \right].$$

[Feldmann, Jung, Mannel; Jenkins, Manohar]

quark case

Bi-fundamental Flavour Fields

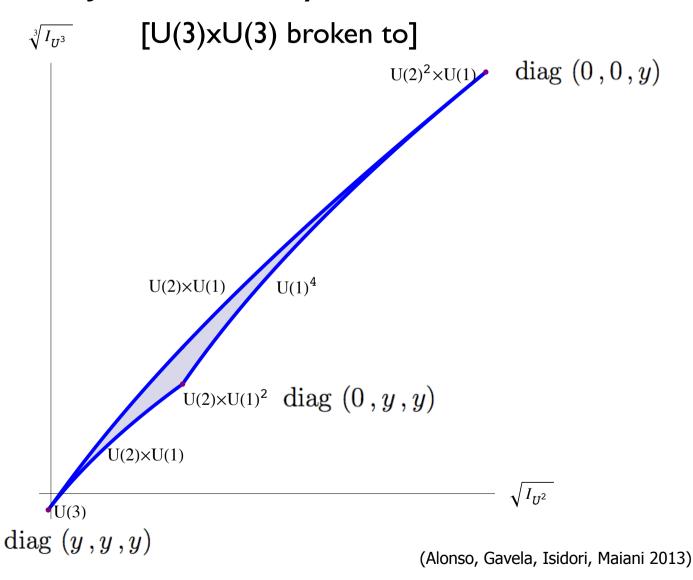
$$\text{Tr}[\mathbf{y}_U\mathbf{y}_U] = \sum y_{\alpha}^2$$

$$I_U = ext{Tr} \left[\mathcal{Y}_U \mathcal{Y}_U^\dagger
ight], \qquad \qquad I_D = ext{Tr} \left[\mathcal{Y}_D \mathcal{Y}_D^\dagger
ight], \qquad \qquad I_{U^2} = ext{Tr} \left[\left(\mathcal{Y}_U \mathcal{Y}_U^\dagger
ight)^2
ight], \qquad \qquad I_{D^2} = ext{Tr} \left[\left(\mathcal{Y}_D \mathcal{Y}_D^\dagger
ight)^2
ight], \qquad \qquad ext{masses}
onumber \ I_{U^3} = ext{Tr} \left[\left(\mathcal{Y}_U \mathcal{Y}_U^\dagger
ight)^3
ight], \qquad \qquad I_{D^3} = ext{Tr} \left[\left(\mathcal{Y}_D \mathcal{Y}_D^\dagger
ight)^3
ight], \qquad \qquad ext{masses}
onumber \ I_{U^3} = ext{Tr} \left[\left(\mathcal{Y}_D \mathcal{Y}_D^\dagger
ight)^3
ight], \qquad \qquad I_{D^3} = ext{Tr} \left[\left(\mathcal{Y}_D \mathcal{Y}_D^\dagger
ight)^3
ight], \qquad \qquad ext{masses}
onumber \ I_{U^3} = ext{Tr} \left[\left(\mathcal{Y}_D \mathcal{Y}_D^\dagger
ight)^3
ight], \qquad \qquad I_{D^3} = ext{Tr} \left[\left(\mathcal{Y}_D \mathcal{Y}_D^\dagger
ight)^3
ight], \qquad \qquad I_{D^3} = ext{Tr} \left[\left(\mathcal{Y}_D \mathcal{Y}_D^\dagger
ight)^3
ight], \qquad \qquad I_{D^3} = ext{Tr} \left[\left(\mathcal{Y}_D \mathcal{Y}_D^\dagger
ight)^3
ight], \qquad \qquad I_{D^3} = ext{Tr} \left[\left(\mathcal{Y}_D \mathcal{Y}_D^\dagger
ight)^3
ight], \qquad \qquad I_{D^3} = ext{Tr} \left[\left(\mathcal{Y}_D \mathcal{Y}_D^\dagger
ight)^3
ight], \qquad \qquad I_{D^3} = ext{Tr} \left[\left(\mathcal{Y}_D \mathcal{Y}_D^\dagger
ight)^3
ight], \qquad \qquad I_{D^3} = ext{Tr} \left[\left(\mathcal{Y}_D \mathcal{Y}_D^\dagger
ight)^3
ight], \qquad \qquad I_{D^3} = ext{Tr} \left[\left(\mathcal{Y}_D \mathcal{Y}_D^\dagger
ight)^3
ight], \qquad \qquad I_{D^3} = ext{Tr} \left[\left(\mathcal{Y}_D \mathcal{Y}_D^\dagger
ight)^3
ight], \qquad \qquad I_{D^3} = ext{Tr} \left[\left(\mathcal{Y}_D \mathcal{Y}_D^\dagger
ight)^3
ight], \qquad \qquad I_{D^3} = ext{Tr} \left[\left(\mathcal{Y}_D \mathcal{Y}_D^\dagger
ight)^3
ight], \qquad \qquad I_{D^3} = ext{Tr} \left[\left(\mathcal{Y}_D \mathcal{Y}_D^\dagger
ight)^3
ight], \qquad \qquad I_{D^3} = ext{Tr} \left[\left(\mathcal{Y}_D \mathcal{Y}_D^\dagger
ight)^3
ight], \qquad \qquad I_{D^3} = ext{Tr} \left[\left(\mathcal{Y}_D \mathcal{Y}_D^\dagger
ight)^3
ight], \qquad \qquad I_{D^3} = ext{Tr} \left[\left(\mathcal{Y}_D \mathcal{Y}_D^\dagger
ight)^3
ight], \qquad \qquad I_{D^3} = ext{Tr} \left[\left(\mathcal{Y}_D \mathcal{Y}_D
ight)^3
ight], \qquad \qquad I_{D^3} = ext{Tr} \left[\left(\mathcal{Y}_D \mathcal{Y}_D
ight)^3
ight], \qquad \qquad I_{D^3} = ext{Tr} \left[\left(\mathcal{Y}_D \mathcal{Y}_D
ight)^3
ight], \qquad \qquad I_{D^3} = ext{Tr} \left[\left(\mathcal{Y}_D \mathcal{Y}_D
ight)^3
ight], \qquad \qquad I_{D^3} = ext{Tr} \left[\left(\mathcal{Y}_D \mathcal{Y}_D
ight)^3
ight], \qquad \qquad I_{D^3} = ext{Tr} \left[\left(\mathcal{Y}_D \mathcal{Y}_D
ight)^3
ight], \qquad \qquad I_{D^3} = ext{Tr} \left[\left(\mathcal{Y}_D \mathcal{Y}_D
ight)^3
ight], \qquad \qquad I_{D^3} = ext{Tr} \left[\left(\mathcal{Y}_D \mathcal{Y}_D
ight)^3
ight], \qquad \qquad I_{D^3} = ext{Tr} \left[\left(\mathcal{Y}_D \mathcal{Y}$$

$$I_{U,D} = \operatorname{Tr}\left[\mathcal{Y}_{U}\mathcal{Y}_{U}^{\dagger}\mathcal{Y}_{D}\mathcal{Y}_{D}^{\dagger}\right], \qquad I_{U,D^{2}} = \operatorname{Tr}\left[\mathcal{Y}_{U}\mathcal{Y}_{U}^{\dagger}\left(\mathcal{Y}_{D}\mathcal{Y}_{D}^{\dagger}\right)^{2}\right], \ I_{U^{2},D} = \operatorname{Tr}\left[\mathcal{Y}_{U}\mathcal{Y}_{U}^{\dagger}\left(\mathcal{Y}_{D}\mathcal{Y}_{D}^{\dagger}\right)^{2}\right], \qquad I_{U,D^{2}} = \operatorname{Tr}\left[\left(\mathcal{Y}_{U}\mathcal{Y}_{U}^{\dagger}\mathcal{Y}_{D}\mathcal{Y}_{D}^{\dagger}\right)^{2}\right].$$

masses and mixing

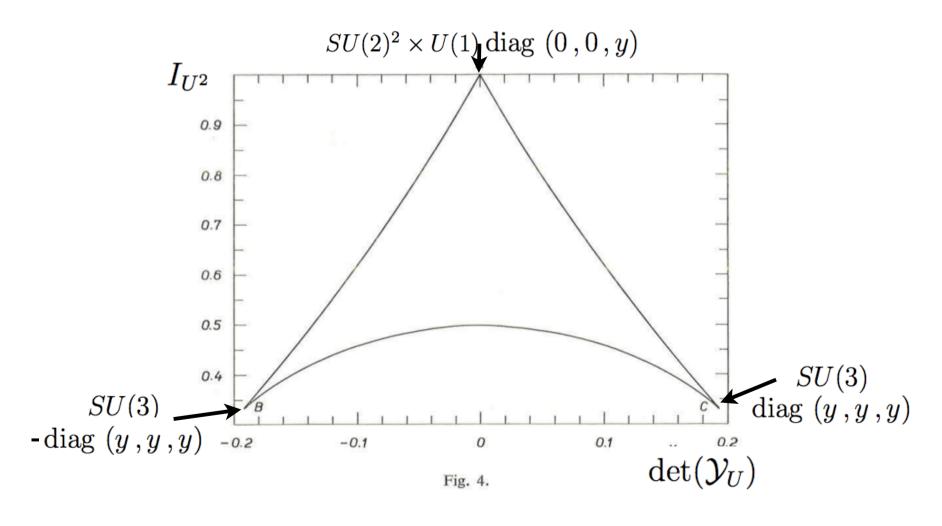
Jacobian Analysis: Masses



Well before the electroweak SM: masses

Jacobian Analysis: [40 years ago...]

Breaking of $SU(3) \times SU(3)$ [Cabibbo, Maiani]



ancestors of dynamical Yukawas decades ago (only to explain the mass spectrum) in

Cabibbo

Michel, +Radicati, Cabibbo+Maiani ...

C. D. Froggat, H. B. Nielsen

$$\det (J_{UD}) = (y_u^2 - y_t^2) (y_t^2 - y_c^2) (y_c^2 - y_u^2)$$
$$(y_d^2 - y_b^2) (y_b^2 - y_s^2) (y_s^2 - y_d^2)$$
$$\times |V_{ud}| |V_{us}| |V_{cd}| |V_{cs}|$$

the rank is reduced the most for:

V_{CKM}= PERMUTATION

no mixing: reordering of states

(Alonso, Gavela, Isidori, Maiani 2013)

Quark Natural Flavour Pattern

Summarizing, a possible and natural breaking pattern arises:

G_{flavour} (quarks):
$$U(3)^3 \rightarrow U(2)^3 \times U(1)$$

giving a hierarchical mass spectrum without mixing

$$\langle y_{\rm D} \rangle = \Lambda_f \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & y_b \end{pmatrix}, \quad \langle y_{\rm U} \rangle = \Lambda_f \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & y_t \end{pmatrix},$$

a good approximation to the observed Yukawas to order $(\lambda_C)^2$

And what happens for leptons?

Any difference with Majorana neutrinos?

Leptons

Global flavour symmetry of the SM + seesaw

* In the SM, for quarks the maximal global symmetry in the limit of massless quarks was:

$$\mathscr{L}_{ ext{SM}}^{ ext{ quarks}} = i \sum_{\psi=Q_L}^{D_R} \overline{\psi} D\!\!\!/ \psi \quad \mathbf{G_{flavour}} \ = m{U(n)_{Q_L}} imes m{U(n)_{U_R}} imes m{U(n)_{D_R}}$$

* In SM +type I seesaw, for leptons

$$\mathcal{L} = \mathcal{L}_{SM} + i \overline{N_R} \partial N_R - \left[\overline{N_R} Y_N \tilde{\phi}^{\dagger} \ell_L + \frac{1}{2} \overline{N_R} M N_R^c + h.c. \right]$$

the maximal leptonic global symmetry in the limit of massless light leptons is $U(n)_L \times U(n)_{E_R} \times O(n)_{N_R}$

-> degenerate heavy neutrinos

Ilustration: 2 families

(Casas-Ibarra parametrization)

for 2 generations, the mixing terms in $V(y_E, y_V)$ is:

Leptons

$$\operatorname{Tr}(y_{\mathrm{E}} \ y_{\mathrm{E}}^{+} \ y_{\mathrm{V}} \ y_{\mathrm{V}}^{+}) \propto \ (m_{\mu}^{2} - m_{e}^{2}) \left[\cos 2\omega (m_{\nu_{2}} - m_{\nu_{1}}) \cos 2\theta + 2 \sin 2\omega \sqrt{m_{\nu_{2}} m_{\nu_{1}}} \sin 2\alpha \sin 2\theta \right]$$

Casas-Ibarra variable in R

where $\operatorname{U_{PMNS}} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} e^{-i\alpha} & 0 \\ 0 & e^{i\alpha} \end{pmatrix}$

Quarks

$$\text{Tr}(y_u y_u^+ y_d y_d^+) \propto (m_c^2 - m_u^2)(m_s^2 - m_d^2)\cos 2\theta$$

١

* For instance for two generations: $O(2)_{NR}$

e.g. two families

$$m_{v} \sim \mathbf{Y}_{v} \underline{v^{2}} \mathbf{Y}_{v}^{T} = y_{1} y_{2} \underline{v^{2}} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$U_{PMNS} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} e^{i\pi/4} & 0 \\ 0 & e^{-i\pi/4} \end{pmatrix}$$
Degenerate neutrino masses

Degenerate neutrino masses

Generically, O(2) allows:

- one mixing angle maximal
- one relative Majorana phase of $\pi/2$
- two degenerate light neutrinos

Now for three generations and considering all

possible independent invariants

easier using the bi-unitary parametrization as we did for quarks

Bi-fundamental Flavour Fields

Physical parameters
=Independent Invariants

Very direct results using the bi-unitary parametrization:

$$\mathbf{Y}_{\mathbf{v}} = \langle \underline{y}_{\mathbf{v}} \rangle = \mathcal{U}_{L} \mathbf{y}_{\nu} \mathcal{U}_{R}, \qquad \mathbf{Y}_{E} = \langle \underline{y}_{E} \rangle = \mathbf{y}_{E}$$

$$\mathcal{U}_{L} \mathcal{U}_{L}^{\dagger} = 1, \quad \mathcal{U}_{R} \mathcal{U}_{R}^{\dagger} = 1,$$

* m
$$_{e, \mu, \tau}$$
= $v y_E$

*But the relation of y_{ν} with light neutrino masses is through:

$$\mathbf{m}_{v} = \mathbf{Y} \underline{\mathbf{v}^{2}} \mathbf{Y}^{\mathbf{T}}$$

Bi-fundamental Flavour Fields

Physical parameters =Independent Invariants

Very direct results using the bi-unitary parametrization:

$$\mathbf{Y}_{\mathbf{v}} = \langle \underline{y}_{\mathbf{v}} \rangle = \mathcal{U}_{L} \mathbf{y}_{\nu} \mathcal{U}_{R}, \qquad \mathbf{Y}_{E} = \langle \underline{y}_{E} \rangle = \mathbf{y}_{E}$$

$$\mathcal{U}_{L} \mathcal{U}_{L}^{\dagger} = 1, \quad \mathcal{U}_{R} \mathcal{U}_{R}^{\dagger} = 1,$$

* m
$$_{e, \mu, \tau}$$
= $_{V}$ y_{E}

*But the relation of y_{ν} with light neutrino masses is through:

$$U_{PMNS}\,\mathbf{m}_{
u}\,U_{PMNS}^T = rac{v^2}{2M}\mathcal{U}_L\,\mathbf{y}_{
u}\,\mathcal{U}_R\,\mathcal{U}_R^T\,\mathbf{y}_{
u}\,\mathcal{U}_L^T\,,$$

Bi-fundamental Flavour Fields

Physical parameters =Independent Invariants

Very direct results using the bi-unitary parametrization:

$$\mathbf{Y}_{\mathbf{v}} = \langle \underline{y}_{\mathbf{v}} \rangle = \mathcal{U}_{L} \mathbf{y}_{\nu} \mathcal{U}_{R}, \qquad \mathbf{Y}_{E} = \langle \underline{y}_{E} \rangle = \mathbf{y}_{E}$$

$$\mathcal{U}_{L} \mathcal{U}_{L}^{\dagger} = 1, \quad \mathcal{U}_{R} \mathcal{U}_{R}^{\dagger} = 1,$$

* m
$$_{e, \mu, \tau}$$
= $_{V}$ y_{E}

*But the relation of y_{ν} with light neutrino masses is through:

 U_{R} is relevant for leptons

$$U_{PMNS} \, \mathbf{m}_{
u} \, U_{PMNS}^T = rac{v^2}{2M} \mathcal{U}_L \, \mathbf{y}_{
u} \, \mathcal{U}_R^T \, \mathbf{y}_{
u} \, \mathcal{U}_L^T \, ,$$

Number of Physical parameters = number of Independent Invariants 15 invariants for $G_{\text{flavour}}(\text{leptons}) = U(3)_L \times U(3)_{E_R} \times O(3)_{N_R}$

Leptons

$$I_E = \operatorname{Tr} \left[\mathcal{Y}_E \mathcal{Y}_E^\dagger
ight] \,, \qquad \qquad I_
u = \operatorname{Tr} \left[\mathcal{Y}_
u \mathcal{Y}_
u^\dagger
ight] \,, \qquad \qquad I_{
u^2} = \operatorname{Tr} \left[\left(\mathcal{Y}_
u \mathcal{Y}_
u^\dagger
ight)^2
ight] \,, \qquad \qquad I_{
u^2} = \operatorname{Tr} \left[\left(\mathcal{Y}_
u \mathcal{Y}_
u^\dagger
ight)^2
ight] \,, \qquad \qquad I_{
u^3} = \operatorname{Tr} \left[\left(\mathcal{Y}_
u \mathcal{Y}_
u^\dagger
ight)^3
ight] \,, \qquad \qquad I_
u^3} = \operatorname{Tr} \left[\left(\mathcal{Y}_
u \mathcal{Y}_
u^\dagger
ight)^3
ight] \,, \qquad \qquad I_
u^3} = \operatorname{Tr} \left[\left(\mathcal{Y}_
u \mathcal{Y}_
u^\dagger
ight)^3
ight] \,, \qquad \qquad I_
u^3} = \operatorname{Tr} \left[\left(\mathcal{Y}_
u \mathcal{Y}_
u^\dagger
ight)^3
ight] \,, \qquad \qquad I_
u^3} = \operatorname{Tr} \left[\left(\mathcal{Y}_
u \mathcal{Y}_
u^\dagger
ight)^3
ight] \,, \qquad \qquad I_
u^3} = \operatorname{Tr} \left[\left(\mathcal{Y}_
u \mathcal{Y}_
u^\dagger
ight)^3
ight] \,, \qquad \qquad I_
u^3} = \operatorname{Tr} \left[\left(\mathcal{Y}_
u \mathcal{Y}_
u^\dagger
ight)^3
ight] \,, \qquad \qquad I_
u^3} = \operatorname{Tr} \left[\left(\mathcal{Y}_
u \mathcal{Y}_
u^\dagger
ight)^3
ight] \,, \qquad \qquad I_
u^3} = \operatorname{Tr} \left[\left(\mathcal{Y}_
u \mathcal{Y}_
u^\dagger
ight)^3
ight] \,, \qquad \qquad I_
u^3} = \operatorname{Tr} \left[\left(\mathcal{Y}_
u \mathcal{Y}_
u^\dagger
ight)^3
ight] \,, \qquad \qquad I_
u^3} = \operatorname{Tr} \left[\left(\mathcal{Y}_
u \mathcal{Y}_
u^\dagger
ight)^3
ight] \,, \qquad \qquad I_
u^3} = \operatorname{Tr} \left[\left(\mathcal{Y}_
u \mathcal{Y}_
u^\dagger
ight)^3
ight] \,, \qquad \qquad I_
u^3} = \operatorname{Tr} \left[\left(\mathcal{Y}_
u \mathcal{Y}_
u^\dagger
ight)^3
ight] \,, \qquad \qquad I_
u^3} = \operatorname{Tr} \left[\left(\mathcal{Y}_
u \mathcal{Y}_
u^\dagger
ight)^3
ight] \,, \qquad \qquad I_
u^3} = \operatorname{Tr} \left[\left(\mathcal{Y}_
u \mathcal{Y}_
u^\dagger
ight)^3
ight] \,, \qquad \qquad I_
u^3} = \operatorname{Tr} \left[\left(\mathcal{Y}_
u \mathcal{Y}_
u^\dagger
ight)^3
ight] \,, \qquad \qquad I_
u^3} = \operatorname{Tr} \left[\left(\mathcal{Y}_
u \mathcal{Y}_
u^\dagger
ight)^3
ight] \,, \qquad \qquad I_
u^3} = \operatorname{Tr} \left[\left(\mathcal{Y}_
u \mathcal{Y}_
u^\dagger
ight)^3
ight] \,, \qquad \qquad I_
u^3} = \operatorname{Tr} \left[\left(\mathcal{Y}_
u \mathcal{Y}_
u^\dagger
ight)^3
ight] \,, \qquad \qquad I_
u^3} = \operatorname{Tr} \left[\left(\mathcal{Y}_
u \mathcal{Y}_
u^\dagger
ight)^3
ight] \,, \qquad \qquad I_
u^3} = \operatorname{Tr} \left[\left(\mathcal{Y}_
u \mathcal{Y}_
u^\dagger
ight)^3
ight] \,. \qquad \qquad I_
u^3} = \operatorname{Tr} \left[\left(\mathcal{Y}_
u \mathcal{Y}_
u^\dagger
ight)^3
ight] \,. \qquad \qquad I_
u^3} = \operatorname{Tr} \left[\left(\mathcal{Y}_
u \mathcal{Y}_
u^\dagger
ight)^3
ight] \,. \qquad \qquad I_
u^3} = \operatorname{Tr} \left[\left(\mathcal{Y}_
u \mathcal{Y}_
u^\dagger
ight)^3
ight] \,. \qquad \qquad I_
u^3} = \operatorname{Tr} \left[\left(\mathcal{Y}_
u \mathcal{Y}_
u^\dagger
ight)^3
ight] \,. \qquad \qquad I_
u^3} = \operatorname{Tr} \left[\left(\mathcal{Y}_
u \mathcal{Y}_
u^\dagger
ight)^3
ight] \,. \qquad \qquad I_
u^3} = \operatorname{Tr} \left[\left(\mathcal{Y}_
u \mathcal{Y}_
u^\dagger
ight)^3
ight] \,. \qquad \qquad I_
u^3} = \operatorname{Tr} \left[\left(\mathcal{Y}_
u \mathcal{Y}_
u^\dagger
ight)^3
ight] \,. \qquad \qquad I_
u^3} = \operatorname{Tr} \left[\left(\mathcal{Y}_
u \mathcal{Y}_
u^\dagger
ight)^3
ight] \,.$$

$$egin{aligned} I_L &= \operatorname{Tr} \left[\mathcal{Y}_
u \mathcal{Y}_
u^\dagger \mathcal{Y}_E \mathcal{Y}_E^\dagger
ight] \,, \ I_{L^2} &= \operatorname{Tr} \left[\mathcal{Y}_
u \mathcal{Y}_
u^\dagger \left(\mathcal{Y}_E \mathcal{Y}_E^\dagger
ight)^2
ight] \,, \ I_{L^3} &= \operatorname{Tr} \left[\mathcal{Y}_E \mathcal{Y}_E^\dagger \left(\mathcal{Y}_
u \mathcal{Y}_
u^\dagger
ight)^2
ight] \,, \ I_{L^4} &= \operatorname{Tr} \left[\left(\mathcal{Y}_
u \mathcal{Y}_
u^\dagger \mathcal{Y}_E \mathcal{Y}_E^\dagger
ight)^2
ight] \,, \end{aligned}$$

U_L and eigenvalues

$$egin{aligned} I_R &= \operatorname{Tr} \left[\mathcal{Y}_
u^\dagger \mathcal{Y}_
u \mathcal{Y}_
u^T \mathcal{Y}_
u^*
ight] \;, \ &I_{R^2} &= \operatorname{Tr} \left[\left(\mathcal{Y}_
u^\dagger \mathcal{Y}_
u
ight)^2 \mathcal{Y}_
u^T \mathcal{Y}_
u^*
ight] \;, \ &I_{R^3} &= \operatorname{Tr} \left[\left(\mathcal{Y}_
u^\dagger \mathcal{Y}_
u \mathcal{Y}_
u^T \mathcal{Y}_
u^*
ight)^2
ight] \;, \end{aligned}$$

U_R and eigenvalues

$$I_{LR} = \operatorname{Tr}\left[\mathcal{Y}_{
u}\mathcal{Y}_{
u}^{T}\mathcal{Y}_{
u}^{*}\mathcal{Y}_{
u}^{\dagger}\mathcal{Y}_{
u}E\mathcal{Y}_{E}^{\dagger}\right]\,, \quad I_{RL} = \operatorname{Tr}\left[\mathcal{Y}_{
u}\mathcal{Y}_{
u}^{T}\mathcal{Y}_{E}^{*}\mathcal{Y}_{E}^{T}\mathcal{Y}_{
u}^{*}\mathcal{Y}_{
u}^{\dagger}\mathcal{Y}_{E}\mathcal{Y}_{E}^{\dagger}\right]\,,$$

(Alonso, Gavela, Isidori, Maiani 2013)

New Invariants wrt

Number of Physical parameters = number of Independent Invariants 15 invariants for $G_{\text{flavour}}(\text{leptons}) = U(3)_L \times U(3)_{E_R} \times O(3)_{N_R}$

Leptons

$$egin{aligned} I_L &= \operatorname{Tr} \left[\mathcal{Y}_
u \mathcal{Y}_
u^\dagger \mathcal{Y}_E \mathcal{Y}_E^\dagger
ight] \,, \ I_{L^2} &= \operatorname{Tr} \left[\mathcal{Y}_
u \mathcal{Y}_
u^\dagger \left(\mathcal{Y}_E \mathcal{Y}_E^\dagger
ight)^2
ight] \,, \ I_{L^3} &= \operatorname{Tr} \left[\mathcal{Y}_E \mathcal{Y}_E^\dagger \left(\mathcal{Y}_
u \mathcal{Y}_
u^\dagger
ight)^2
ight] \,, \ I_{L^4} &= \operatorname{Tr} \left[\left(\mathcal{Y}_
u \mathcal{Y}_
u^\dagger \mathcal{Y}_E \mathcal{Y}_E^\dagger
ight)^2
ight] \,, \end{aligned}$$

U_L and eigenvalues

$$egin{aligned} I_R &= \operatorname{Tr} \left[\mathcal{Y}_
u^\dagger \mathcal{Y}_
u (\mathcal{Y}_
u^\dagger \mathcal{Y}_
u)^\mathrm{T}
ight] \ I_{R^2} &= \operatorname{Tr} \left[\left(\mathcal{Y}_
u^\dagger \mathcal{Y}_
u
ight)^2 \mathcal{Y}_
u^T \mathcal{Y}_
u^*
ight] \,, \ I_{R^3} &= \operatorname{Tr} \left[\left(\mathcal{Y}_
u^\dagger \mathcal{Y}_
u \mathcal{Y}_
u^T \mathcal{Y}_
u^*
ight)^2
ight] \,, \end{aligned}$$

U_R and eigenvalues

$$I_{LR} = \operatorname{Tr}\left[\mathcal{Y}_{
u}\mathcal{Y}_{
u}^{T}\mathcal{Y}_{
u}^{*}\mathcal{Y}_{
u}^{\dagger}\mathcal{Y}_{
u}E\mathcal{Y}_{E}^{\dagger}\right]\,, \quad I_{RL} = \operatorname{Tr}\left[\mathcal{Y}_{
u}\mathcal{Y}_{
u}^{T}\mathcal{Y}_{E}^{*}\mathcal{Y}_{E}^{T}\mathcal{Y}_{
u}^{*}\mathcal{Y}_{
u}^{\dagger}\mathcal{Y}_{E}\mathcal{Y}_{E}^{\dagger}\right]\,,$$

(Alonso, Gavela, Isidori, Maiani 2013)

New Invariants wrt

Number of Physical parameters = number of Independent Invariants 15 invariants for $G_{\text{flavour}}(\text{leptons}) = U(3)_L \times U(3)_{E_R} \times O(3)_{N_R}$

Leptons

$$I_E = \operatorname{Tr}\left[\mathcal{Y}_E \mathcal{Y}_E^\dagger\right]\,, \qquad \qquad I_
u = \operatorname{Tr}\left[\mathcal{Y}_
u \mathcal{Y}_
u^\dagger\right]\,, \qquad \qquad I_{E^2} = \operatorname{Tr}\left[\left(\mathcal{Y}_E \mathcal{Y}_E^\dagger\right)^2\right]\,, \qquad \qquad I_{
u^2} = \operatorname{Tr}\left[\left(\mathcal{Y}_
u \mathcal{Y}_
u^\dagger\right)^2\right]\,, \qquad \qquad I_{E^3} = \operatorname{Tr}\left[\left(\mathcal{Y}_
u \mathcal{Y}_
u^\dagger\right)^3\right]\,, \qquad \qquad I_{
u^3} = \operatorname{Tr}\left[\left(\mathcal{Y}_
u \mathcal{Y}_
u^\dagger\right)^3\right]\,,$$

$$I_L = ext{Tr} \left[\mathcal{Y}_
u \mathcal{Y}_
u^\dagger \mathcal{Y}_E \mathcal{Y}_E^\dagger
ight] \,,
onumber \ I_{L^2} = ext{Tr} \left[\mathcal{Y}_
u \mathcal{Y}_
u^\dagger \left(\mathcal{Y}_E \mathcal{Y}_E^\dagger
ight)^2
ight] \,,
onumber \ I_{L^3} = ext{Tr} \left[\mathcal{Y}_E \mathcal{Y}_E^\dagger \left(\mathcal{Y}_
u \mathcal{Y}_
u^\dagger
ight)^2
ight] \,,
onumber \ I_{L^4} = ext{Tr} \left[\left(\mathcal{Y}_
u \mathcal{Y}_
u^\dagger \mathcal{Y}_E \mathcal{Y}_E^\dagger
ight)^2
ight] \,,
onumber \ I_{L^4} = ext{Tr} \left[\left(\mathcal{Y}_
u \mathcal{Y}_
u^\dagger \mathcal{Y}_E \mathcal{Y}_E^\dagger
ight)^2
ight] \,,
onumber \ I_{L^4} = ext{Tr} \left[\left(\mathcal{Y}_
u \mathcal{Y}_
u^\dagger \mathcal{Y}_E \mathcal{Y}_E^\dagger
ight)^2
ight] \,,
onumber \ I_{L^4} = ext{Tr} \left[\left(\mathcal{Y}_
u \mathcal{Y}_
u^\dagger \mathcal{Y}_E \mathcal{Y}_E^\dagger
ight)^2
ight] \,,
onumber \ I_{L^4} = ext{Tr} \left[\left(\mathcal{Y}_
u \mathcal{Y}_
u^\dagger \mathcal{Y}_E \mathcal{Y}_E^\dagger
ight)^2
ight] \,,
onumber \ I_{L^4} = ext{Tr} \left[\left(\mathcal{Y}_
u \mathcal{Y}_
u^\dagger \mathcal{Y}_E \mathcal{Y}_E^\dagger
ight)^2
ight] \,,
onumber \ I_{L^4} = ext{Tr} \left[\left(\mathcal{Y}_
u \mathcal{Y}_
u^\dagger \mathcal{Y}_E \mathcal{Y}_E^\dagger
ight)^2
ight] \,,
onumber \ I_{L^4} = ext{Tr} \left[\left(\mathcal{Y}_
u \mathcal{Y}_
u^\dagger \mathcal{Y}_E \mathcal{Y}_E^\dagger
ight)^2
ight] \,,
onumber \ I_{L^4} = ext{Tr} \left[\left(\mathcal{Y}_
u \mathcal{Y}_
u^\dagger \mathcal{Y}_E \mathcal{Y}_E^\dagger
ight)^2
ight] \,,
onumber \ I_{L^4} = ext{Tr} \left[\left(\mathcal{Y}_
u \mathcal{Y}_
u^\dagger \mathcal{Y}_E \mathcal{Y}_E^\dagger
ight)^2
ight] \,,
onumber \ I_{L^4} = ext{Tr} \left[\left(\mathcal{Y}_
u \mathcal{Y}_
u^\dagger \mathcal{Y}_E \mathcal{Y}_E^\dagger
ight)^2
ight] \,,
onumber \ I_{L^4} = ext{Tr} \left[\left(\mathcal{Y}_
u \mathcal{Y}_
u^\dagger \mathcal{Y}_
u^\dagger \mathcal{Y}_E \mathcal{Y}_E^\dagger
ight)^2
ight] \,,
onumber \ I_{L^4} = ext{Tr} \left[\left(\mathcal{Y}_
u \mathcal{Y}_
u^\dagger \mathcal{Y}_
u^\dagger \mathcal{Y}_E \mathcal{Y}_E^\dagger
ight)^2
ight] \,,
onumber \ I_{L^4} = ext{Tr} \left[\left(\mathcal{Y}_
u \mathcal{Y}_
u^\dagger \mathcal{Y}_
u^\dagger \mathcal{Y}_E \mathcal{Y}_E \mathcal{Y}_E^\dagger
ight)^2
ight] \,,
onumber \ I_{L^4} = ext{Tr} \left[\left(\mathcal{Y}_
u \mathcal{Y}_
u^\dagger \mathcal{Y}_
u^\dagger \mathcal{Y}_E \mathcal{$$

U_L and eigenvalues

$$egin{aligned} &\operatorname{Tr}(\mathbf{y}_{
u}^2 \mathcal{U}_R \mathcal{U}_R^T \mathbf{y}_{
u}^2 \mathcal{U}_R^* \mathcal{U}_R^\dagger) \ &I_{R^2} = \operatorname{Tr}\left[\left(\mathcal{Y}_{
u}^\dagger \mathcal{Y}_{
u}
ight)^2 \mathcal{Y}_{
u}^T \mathcal{Y}_{
u}^*
ight]\,, \ &I_{R^3} = \operatorname{Tr}\left[\left(\mathcal{Y}_{
u}^\dagger \mathcal{Y}_{
u} \mathcal{Y}_{
u}^T \mathcal{Y}_{
u}^*
ight)^2
ight]\,, \end{aligned}$$

U_R and eigenvalues

$$I_{LR} = \operatorname{Tr}\left[\mathcal{Y}_{
u}\mathcal{Y}_{
u}^{T}\mathcal{Y}_{
u}^{*}\mathcal{Y}_{
u}^{\dagger}\mathcal{Y}_{
u}E\mathcal{Y}_{E}^{\dagger}\right]\,, \quad I_{RL} = \operatorname{Tr}\left[\mathcal{Y}_{
u}\mathcal{Y}_{
u}^{T}\mathcal{Y}_{E}^{*}\mathcal{Y}_{E}^{T}\mathcal{Y}_{
u}^{*}\mathcal{Y}_{
u}^{\dagger}\mathcal{Y}_{E}\mathcal{Y}_{E}^{\dagger}\right]\,,$$

(Alonso, Gavela, Isidori, Maiani 2013)

New Invariants wrt

Jacobian

$$J = \begin{pmatrix} \partial_{\mathbf{y}_E} I_{E^n} & 0 & 0 & \partial_{\mathbf{y}_E} I_{L^n} & \partial_{\mathbf{y}_E} I_{LR} \\ 0 & \partial_{\mathbf{y}_{\nu}} I_{\nu^n} & \partial_{\mathbf{y}_{\nu}} I_{R^n} & \partial_{\mathbf{y}_{\nu}} I_{L^n} & \partial_{\mathbf{y}_{\nu}} I_{LR} \\ 0 & 0 & \partial_{\mathcal{U}_R} I_{R^n} & 0 & \partial_{\mathcal{U}_R} I_{LR} \\ 0 & 0 & 0 & \partial_{\mathcal{U}_L} I_{L^n} & \partial_{\mathcal{U}_L} I_{LR} \\ 0 & 0 & 0 & 0 & \partial_{\mathcal{U}_L} I_{L^n} \end{pmatrix},$$

$$\mathrm{Diag}(J) \equiv (J_E, J_{\nu}, J_{\mathcal{U}_R}, J_{\mathcal{U}_L}, J_{LR})$$

$$\det (J_{\mathcal{U}_L}) = (y_{\nu_1}^2 - y_{\nu_2}^2) (y_{\nu_2}^2 - y_{\nu_3}^2) (y_{\nu_3}^2 - y_{\nu_1}^2) (y_e^2 - y_\mu^2) (y_\mu^2 - y_\tau^2) (y_\tau^2 - y_e^2) |\mathcal{U}_L^{e1}| |\mathcal{U}_L^{e2}| |\mathcal{U}_L^{\mu 1}| |\mathcal{U}_L^{\mu 2}|.$$

same as for V_{CKM}

the rank is reduced the most for $\mathcal{U}_{R}\mathcal{U}_{R}^{T}$ being a permutation

...which is now **not** trivial mixing...

$$\frac{v^2}{M} \left(\begin{array}{ccc} y_{\nu_1}^2 & 0 & 0 \\ 0 & 0 & y_{\nu_2} y_{\nu_3} \\ 0 & y_{\nu_2} y_{\nu_3} & 0 \end{array} \right) = U_{PMNS} \left(\begin{array}{ccc} m_{\nu_1} & 0 & 0 \\ 0 & m_{\nu_2} & 0 \\ 0 & 0 & m_{\nu_2} \end{array} \right) U_{PMNS}^T,$$

...in fact it allows maximal mixing:

...which is now **not** trivial mixing...

$$\frac{v^2}{M} \left(\begin{array}{ccc} y_{\nu_1}^2 & 0 & 0 \\ 0 & 0 & y_{\nu_2} y_{\nu_3} \\ 0 & y_{\nu_2} y_{\nu_3} & 0 \end{array} \right) = U_{PMNS} \left(\begin{array}{ccc} m_{\nu_1} & 0 & 0 \\ 0 & m_{\nu_2} & 0 \\ 0 & 0 & m_{\nu_2} \end{array} \right) U_{PMNS}^T,$$

...in fact it leads to one maximal mixing angle:

$$U_{PMNS} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{\sqrt{2}} & \frac{i}{\sqrt{2}} \\ 0 & -\frac{1}{\sqrt{2}} & \frac{i}{\sqrt{2}} \end{pmatrix}, \quad m_{\vee 2} = m_{\vee 3} = \frac{v^2}{M} y_{\nu_2} y_{\nu_3}, \quad m_{\nu_1} = \frac{v^2}{M} y_{\nu_1}^2.$$

and maximal Majorana phase

...which is now **not** trivial mixing...

$$\frac{v^2}{M} \begin{pmatrix} y_{\nu_1}^2 & 0 & 0 \\ 0 & 0 & y_{\nu_2} y_{\nu_3} \\ 0 & y_{\nu_2} y_{\nu_3} & 0 \end{pmatrix} = U_{PMNS} \begin{pmatrix} m_{\nu_1} & 0 & 0 \\ 0 & m_{\nu_2} & 0 \\ 0 & 0 & m_{\nu_2} \end{pmatrix} U_{PMNS}^T,$$

...in fact it leads to one maximal mixing angle:

$$\theta_{23} = 45^{\circ};$$

 $\theta_{23} = 45^{\circ};$ Majorana Phase Pattern (I,I,i)

& at this level mass degeneracy: $m_{v2} = m_{v3}$

if the three neutrinos are quasidegenerate,

$$U_{PMNS} \begin{pmatrix} m_0 & 0 & 0 \\ 0 & m_0 & 0 \\ 0 & 0 & m_0 \end{pmatrix} U_{PMNS}^T = \frac{y_{\nu}v^2}{M} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

This very simple structure is signaled by the extrema of the potential and

and is diagonalized by a maximal $\theta = 45^{\circ}$

What is the symmetry in this boundary?

a very intriguing

 $U(1)_{diag}$

Generalization to any seesaw model

the effective Weinberg Operator

$$\bar{\ell}_L \tilde{H} \frac{\mathsf{C}^{\mathsf{d=5}}}{M} \tilde{H}^T \ell_L^c$$

shall have a flavour structure that breaks $U(3)_L$ to O(3)

$$\frac{\mathbf{v}^2 \quad \mathbf{C}^{d=5}}{M} = m_{V} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

then the results apply to any seesaw model

First conclusion:

* at the same order in which the minimum of the potential

does NOT allow quark mixing,

it allows:

- hierarchical charged leptons
- quasi-degenerate neutrino masses
- one angle of ~45 degrees
- one maximal Majorana phase and the other one trivial

Perturbations can produce a second large angle

if the three neutrinos are quasidegenerate, perturbations:

$$U_{PMNS} \left(egin{array}{ccc} m_0 & 0 & 0 \ 0 & m_0 & 0 \ 0 & 0 & m_0 \end{array}
ight) U_{PMNS}^T = egin{array}{ccc} y_
u v^2 \ M \end{array} \left(egin{array}{ccc} 1 + \delta + \sigma & \epsilon + \eta & \epsilon - \eta \ \epsilon + \eta & \delta + \kappa & 1 \ \epsilon - \eta & 1 & \delta - \kappa \end{array}
ight) T_{PMNS}^T = egin{array}{ccc} y_
u v^2 \ K + \eta & \delta + \kappa & 1 \ K - \eta & 1 & \delta - \kappa \end{array}
ight) T_{PMNS}^T = egin{array}{cccc} y_
u v^2 \ K + \eta & \delta + \kappa & 1 \ K - \eta & 1 & \delta - \kappa \end{array}
ight) T_{PMNS}^T = egin{array}{cccc} y_
u v^2 \ K + \eta & \delta + \kappa & 1 \ K - \eta & 1 & \delta - \kappa \end{array}
ight) T_{PMNS}^T = egin{array}{cccc} y_
u v^2 \ K + \eta & \delta + \kappa & 1 \ K - \eta & 1 & \delta - \kappa \end{array}
ight) T_{PMNS}^T = egin{array}{cccc} y_
u v^2 \ K + \eta & \delta + \kappa & 1 \ K - \eta & 1 & \delta - \kappa \end{array}
ight) T_{PMNS}^T = egin{array}{cccc} y_
u v^2 \ K + \eta & \delta + \kappa & 1 \ K - \eta & 1 & \delta - \kappa \end{array}
ight) T_{PMNS}^T = egin{array}{cccc} y_
u v^2 \ K + \eta & \delta + \kappa & 1 \ K - \eta & 1 & \delta - \kappa \end{array}
ight) T_{PMNS}^T = egin{array}{ccccc} y_
u v^2 \ K + \eta & \delta + \kappa & 1 \ K - \eta & 1 & \delta - \kappa \end{array}
ight) T_{PMNS}^T = egin{array}{ccccc} y_
u v^2 \ K + \eta & \delta + \kappa & 1 \ K - \eta & 1 & \delta - \kappa \end{array}
ight) T_{PMNS}^T = egin{array}{ccccc} y_
u v^2 \ K + \eta & \delta + \kappa & 1 \ K - \eta & 1 & \delta - \kappa \end{array}
ight) T_{PMNS}^T = egin{array}{ccccc} y_
u v^2 \ K + \eta & 0 & 0 \ K - \eta & 0 & 0$$

produce a second large angle and a perturbative one together with mass splittings

$$\theta_{23} \simeq \pi/4$$
 , θ_{12} large , $\theta_{13} \simeq \epsilon$

Fixed Majorana phases: (1, 1, i)

degenerate spectrum

Perturbations can produce a second large angle

if the three neutrinos are quasidegenerate, perturbations:

produce a second large angle and a perturbative one together with mass splittings

$$\theta_{23} \simeq \pi/4$$
 , θ_{12} large , $\theta_{13} \simeq \epsilon$

only this vanishes with the perturbations

Fixed Majorana phases: (1, 1, i)

degenerate spectrum

this angle does not vanish with vanishing perturbations

Perturbations can produce a second large angle

if the three neutrinos are quasidegenerate, perturbations:

$$U_{PMNS} \left(egin{array}{ccc} m_0 & 0 & 0 \ 0 & m_0 & 0 \ 0 & 0 & m_0 \end{array}
ight) U_{PMNS}^T = egin{array}{ccc} y_
u v^2 \ M \end{array} \left(egin{array}{ccc} 1 + \delta + \sigma & \epsilon + \eta & \epsilon - \eta \ \epsilon + \eta & \delta + \kappa & 1 \ \epsilon - \eta & 1 & \delta - \kappa \end{array}
ight) T_{PMNS}^T = egin{array}{ccc} y_
u v^2 \ M \end{array} \left(egin{array}{ccc} 1 + \delta + \sigma & \epsilon + \eta & \epsilon - \eta \ \epsilon + \eta & \delta + \kappa & 1 \ \epsilon - \eta & 1 & \delta - \kappa \end{array}
ight) T_{PMNS}^T = egin{array}{ccc} y_
u v^2 \ M \end{array} \left(egin{array}{ccc} 1 + \delta + \sigma & \epsilon + \eta & \epsilon - \eta \ \epsilon + \eta & \delta + \kappa & 1 \ \epsilon - \eta & 1 & \delta - \kappa \end{array}
ight) T_{PMNS}^T = egin{array}{ccc} y_
u v^2 \ M \end{array} \left(egin{array}{ccc} 1 + \delta + \sigma & \epsilon + \eta & \epsilon - \eta \ \epsilon + \eta & \delta + \kappa & 1 \ \epsilon - \eta & 1 & \delta - \kappa \end{array}
ight) T_{PMNS}^T = egin{array}{ccc} y_
u v^2 \ M \end{array} \left(egin{array}{ccc} 1 + \delta + \sigma & \epsilon + \eta & \epsilon - \eta \ \epsilon + \eta & \delta + \kappa & 1 \ \epsilon - \eta & 1 & \delta - \kappa \end{array}
ight) T_{PMNS}^T = egin{array}{ccc} y_
u v^2 \ M \end{array} \left(egin{array}{ccc} 1 + \delta + \sigma & \epsilon + \eta & \epsilon - \eta \ \epsilon + \eta & \delta + \kappa & 1 \ \epsilon - \eta & 1 & \delta - \kappa \end{array}
ight) T_{PMNS}^T = egin{array}{ccc} y_
u v^2 \ M \end{array} \left(egin{array}{ccc} 1 + \delta + \sigma & \epsilon + \eta & \epsilon - \eta \ \delta + \kappa & 1 \ \delta - \kappa & 1 \end{array}
ight) T_{PMNS}^T = egin{array}{ccc} y_
u v^2 \ M \end{array} \left(egin{array}{ccc} 1 + \delta + \sigma & \epsilon + \eta & \epsilon - \eta \ \delta + \kappa & 1 \ \delta - \kappa & 1 \end{array} \right) T_{PMNS}^T = egin{array}{ccc} y_
u v^2 \ M \end{array} \left(egin{array}{ccc} 1 + \delta + \sigma & \epsilon + \eta & \epsilon - \eta \ \delta + \kappa & 1 \ \delta - \kappa & 1 \end{array} \right) T_{PMNS}^T = egin{array}{ccc} y_
u v^2 \ M \end{array} \left(egin{array}{ccc} 1 + \delta + \sigma & \epsilon + \eta & \epsilon - \eta \ \delta + \kappa & 1 \ \delta - \kappa & 1 \end{array} \right) T_{PMNS}^T = egin{array}{ccc} y_
u v^2 \ M \end{array} \right) T_{PMNS}^T = egin{array}{ccc} y_
u v^2 \ M \end{array} \left(egin{array}{ccc} 1 + \delta + \sigma & \epsilon + \eta & \epsilon - \eta \ \delta + \kappa & 1 \end{array} \right) T_{PMNS}^T = egin{array}{ccc} y_
u v^2 \ M \end{array} \left(egin{array}{ccc} 1 + \delta + \sigma & \epsilon + \eta & \epsilon - \eta \ \delta + \kappa & 1 \end{array} \right) T_{PMNS}^T = egin{array}{ccc} y_
u v^2 \ M \end{array} \right) T_{PMNS}^T = egin{array}{ccc} y_
u v^2 \ M \end{array} \left(\begin{array}{ccc} 1 + \delta + \sigma & \epsilon + \eta & \epsilon + \eta & \epsilon - \eta \ \delta & \epsilon & 1 \end{array} \right) T_{PMNS}^T = egin{array}{ccc} y_
u v^2 \ M \end{array} \left(\begin{array}{ccc} 1 + \delta & \epsilon & \epsilon & 1 \end{array} \right) T_{PMNS}^T = egin{array}{ccc} y_
u v^2 \ M \end{array} \right) T_{PMNS}^T = egin{array}{ccc} y_
u v^2 \ M \end{array} \left(\begin{array}{cccc} 1 + \delta & \epsilon &$$

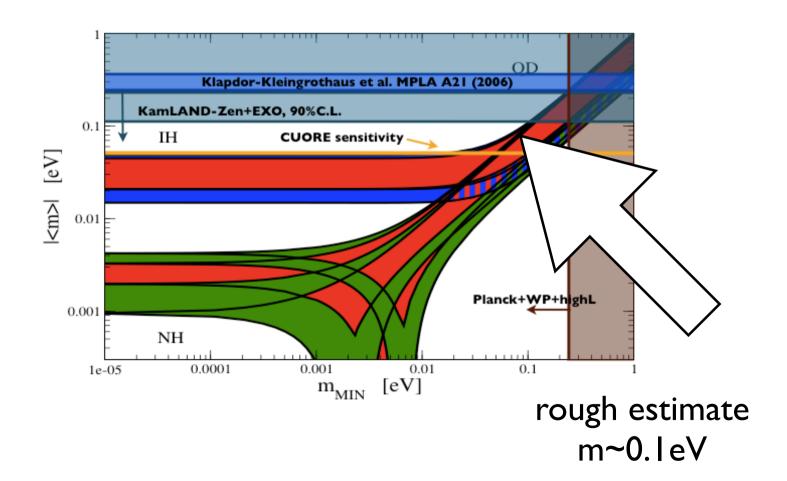
produce a second large angle and a perturbative one together with mass splittings

$$\theta_{23} \simeq \pi/4$$
 , θ_{12} large , $\theta_{13} \simeq \epsilon$

Fixed Majorana phases: (1, 1, i)

degenerate spectrum

accommodation of angles requires degenerate spectrum at reach in future neutrinoless double β exps.!



Slide from Laura Baudis talk presenting the new Gerda data at Invisibles I 3 workshop this summer

The physics

- Detect the neutrinoless double beta decay in ⁷⁶Ge:
 - ⇒lepton number violation
 - ⇒information on the nature of neutrinos and on the effective Majorana neutrino mass

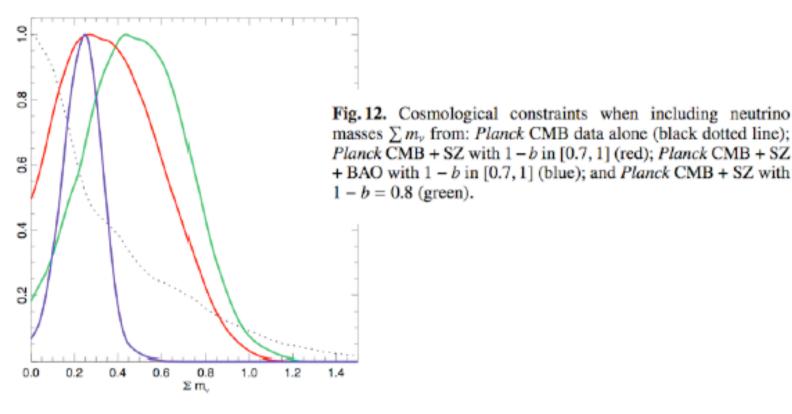
$$\Gamma^{0\nu} = \frac{1}{T_{1/2}^{0\nu}} = G^{0\nu}(Q,Z)|M^{0\nu}|^2 \frac{|m_{\beta\beta}|^2}{m_e^2}$$

$$10^{32} \frac{10^{32}}{10^{36}}$$
Alonso, Gavela, Isidori, Maiani (4x10²⁵ - 8x10²⁶ yr) arXiv:1306.5927 [hep-ph] 10²⁶ KK 90% CL HM 90% CL H

latest from Planck....

$$\sum m_{\nu} = 0.22 \pm 0.09 \text{ eV}$$

Planck Collaboration: Cost



Madrid, July 4, 2013

Where do the differences in Mixing originated?

in the symmetries of the

Quark and Lepton sectors

$$\mathcal{G}^q_{\mathcal{F}} \sim U(3)^3$$

$$\mathcal{G}^q_{\mathcal{F}} \sim U(3)^3$$
 $\qquad \qquad \mathcal{G}^l_{\mathcal{F}} \sim U(3)^2 \times O(3)$

for the type I seesaw employed here;

in general
$$U(n_g)$$
 vs $O(n_g)$

Where do the differences in Mixing originate?

From the MAJORANA vs DIRAC nature of fermions

Conclusions

- Spontaneous Flavour Symmetry Breaking is a predictive dynamical scenario
- Simple solutions arise that resemble nature in first approximation
- The differences in the mixing pattern of Quarks and Leptons arise from their Dirac vs Majorana nature (U vs. O symmetries).
 O(2) singled out -> O(3).
- A correlation between large angles and degenerate spectrum emerges. Explicitly, for neutrinos we find: fixed Majorana phases (1,1,i), $\theta_{23} = 45^{\circ}$, θ_{12} large, θ_{13} small and deg. V's
- This scenario will be tested in the near future by $0v2\beta$ experiments (~. I eV).... or cosmology!!!

The prediction:

Back-up slides

We set the perturbations by hand. Can we predict them also dynamically?

Fundamental Fields

May provide dynamically the perturbations

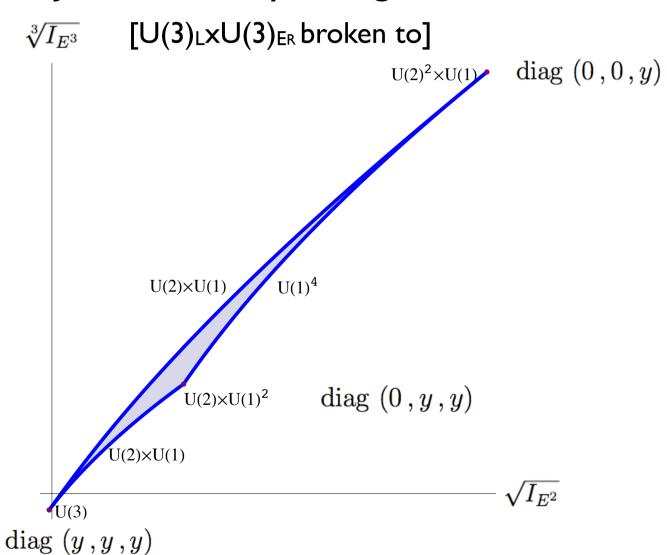
In the case of quarks they can give the right corrections:

$$rac{\mathcal{Y}_U}{\Lambda_f} + rac{\chi_U^L \chi_U^{R\dagger}}{\Lambda_f^2} \sim \left(egin{array}{ccc} 0 & \sin heta_c \, y_c & 0 \ 0 & \cos heta_c \, y_c & 0 \ 0 & 0 & y_t \end{array}
ight)$$

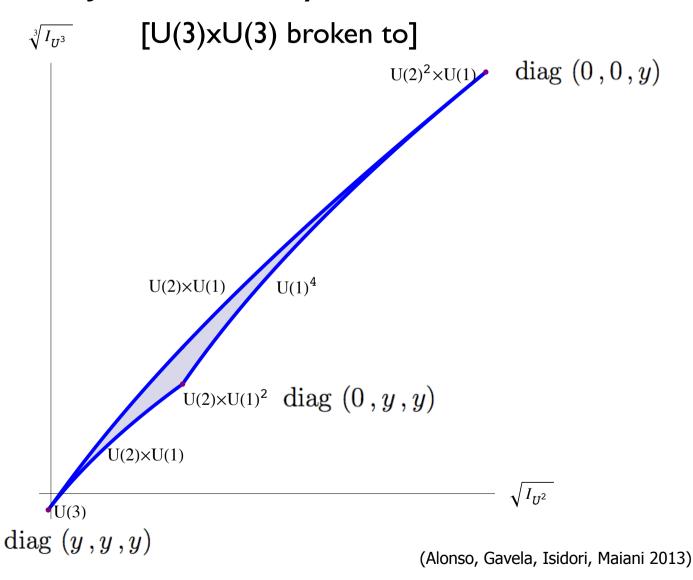
[Alonso, Gavela, Merlo, Rigolin]

under study in the lepton sector

Jacobian Analysis: Eigenvalues

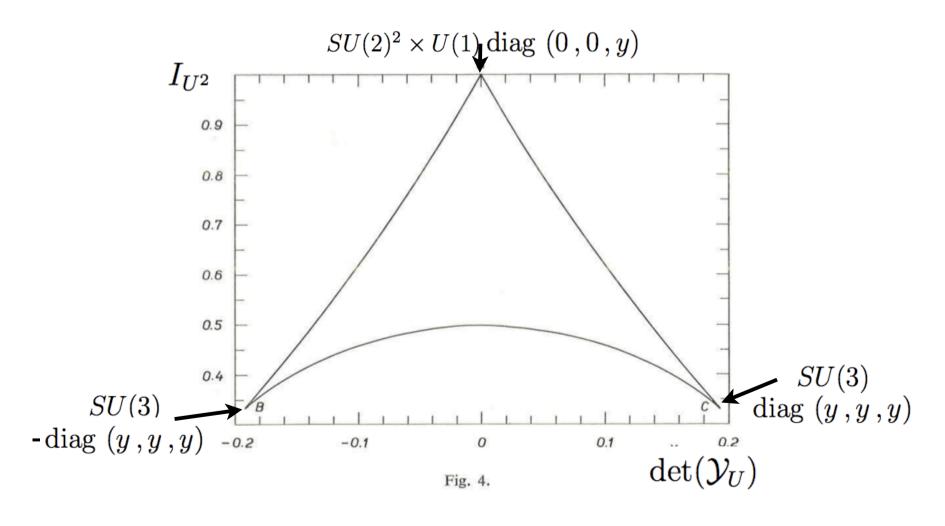


Jacobian Analysis: Masses



Jacobian Analysis: [40 years ago...]

Breaking of $SU(3) \times SU(3)$ [Cabibbo, Maiani]



Lepton Natural Flavour Pattern

Summarizing, a possible and natural breaking pattern:

$$\mathcal{G}^l_{\mathcal{F}}: U(3)^2 \times O(3) \to U(2) \times U(1)$$

brings along hierarchical charged leptons

$$\mathcal{Y}_E = \Lambda_f \left(egin{array}{ccc} 0 & 0 & 0 \ 0 & 0 & 0 \ 0 & 0 & y_ au \end{array}
ight), \hspace{0.5cm} \mathcal{Y}_
u = \Lambda_f \left(egin{array}{ccc} y_{
u_1} & 0 & 0 \ 0 & y_{
u_2}/\sqrt{2} & -iy_{
u_2}/\sqrt{2} \ 0 & y_{
u_3}/\sqrt{2} & iy_{
u_3}/\sqrt{2} \end{array}
ight),$$

and (at least) two degenerate neutrinos and maximal angle and Majorana phase

$$\theta_{23} = 45^{\circ};$$

Majorana Phase Pattern (I,I,i)

& Mass degeneracy: $m_{v2} = m_{v3}$

Renormalizable Potential

Invariants at the Renormalizable Level

$$I_{U} = \operatorname{Tr} \left[\mathcal{Y}_{U} \mathcal{Y}_{U}^{\dagger} \right], \qquad I_{D} = \operatorname{Tr} \left[\mathcal{Y}_{D} \mathcal{Y}_{D}^{\dagger} \right],$$

$$I_{U^{2}} = \operatorname{Tr} \left[\left(\mathcal{Y}_{U} \mathcal{Y}_{U}^{\dagger} \right)^{2} \right], \qquad I_{D^{2}} = \operatorname{Tr} \left[\left(\mathcal{Y}_{D} \mathcal{Y}_{D}^{\dagger} \right)^{2} \right],$$

$$I_{U^{3}} = \operatorname{Tr} \left[\left(\mathcal{Y}_{U} \mathcal{Y}_{U}^{\dagger} \right)^{3} \right], \qquad I_{D^{3}} = \operatorname{Tr} \left[\left(\mathcal{Y}_{D} \mathcal{Y}_{D}^{\dagger} \right)^{3} \right],$$

$$I_{U,D} = \operatorname{Tr} \left[\mathcal{Y}_{U} \mathcal{Y}_{U}^{\dagger} \mathcal{Y}_{D} \mathcal{Y}_{D}^{\dagger} \right], \qquad I_{U,D^{2}} = \operatorname{Tr} \left[\mathcal{Y}_{U} \mathcal{Y}_{U}^{\dagger} \left(\mathcal{Y}_{D} \mathcal{Y}_{D}^{\dagger} \right)^{2} \right],$$

$$I_{U^{2},D} = \operatorname{Tr} \left[\mathcal{Y}_{U} \mathcal{Y}_{U}^{\dagger} \left(\mathcal{Y}_{D} \mathcal{Y}_{D}^{\dagger} \right)^{2} \right], \qquad I_{(U,D)^{2}} = \operatorname{Tr} \left[\left(\mathcal{Y}_{U} \mathcal{Y}_{U}^{\dagger} \mathcal{Y}_{D} \mathcal{Y}_{D}^{\dagger} \right)^{2} \right].$$

Renormalizable Potential

with the definition

$$X \equiv (I_U, I_D)^T = \left(\operatorname{Tr} \left(\mathcal{Y}_U \mathcal{Y}_U^{\dagger} \right), \operatorname{Tr} \left(\mathcal{Y}_D \mathcal{Y}_D^{\dagger} \right) \right)^T,$$

the potential

$$V^{(4)} = -\mu^{2} \cdot X + X^{T} \cdot \lambda \cdot X + g \operatorname{Tr} \left(\mathcal{Y}_{U} \mathcal{Y}_{U}^{\dagger} \mathcal{Y}_{D} \mathcal{Y}_{D}^{\dagger} \right)$$
$$+ \left(h_{U} \operatorname{Tr} \left(\mathcal{Y}_{U} \mathcal{Y}_{U}^{\dagger} \mathcal{Y}_{U} \mathcal{Y}_{U}^{\dagger} \right) + \left(h_{D} \operatorname{Tr} \left(\mathcal{Y}_{D} \mathcal{Y}_{D}^{\dagger} \mathcal{Y}_{D} \mathcal{Y}_{D}^{\dagger} \right) \right),$$

mass spectrum

which contains 8 parameters

Renormalizable Potential

with the definition

$$X \equiv (I_U, I_D)^T = \left(\operatorname{Tr} \left(\mathcal{Y}_U \mathcal{Y}_U^{\dagger} \right), \operatorname{Tr} \left(\mathcal{Y}_D \mathcal{Y}_D^{\dagger} \right) \right)^T,$$

the potential

mixing

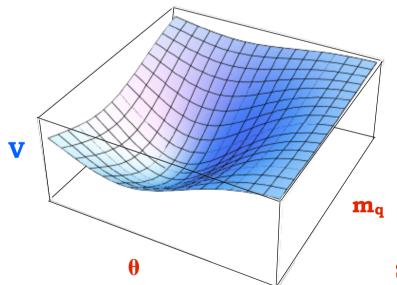
 $V^{(4)} = -\mu^{2} \cdot X + X^{T} \cdot \lambda \cdot X + g \operatorname{Tr} \left(\mathcal{Y}_{U} \mathcal{Y}_{U}^{\dagger} \mathcal{Y}_{D} \mathcal{Y}_{D}^{\dagger} \right)$ $+ h_{U} \operatorname{Tr} \left(\mathcal{Y}_{U} \mathcal{Y}_{U}^{\dagger} \mathcal{Y}_{U} \mathcal{Y}_{U}^{\dagger} \right) + h_{D} \operatorname{Tr} \left(\mathcal{Y}_{D} \mathcal{Y}_{D}^{\dagger} \mathcal{Y}_{D} \mathcal{Y}_{D}^{\dagger} \right) ,$

which contains 8 parameters

e.g. for the case of two families:

$$\text{Tr}(y_u y_u^+ y_d y_d^+) \propto (m_c^2 - m_u^2)(m_s^2 - m_d^2) \cos 2\theta$$

at the minimum:
$$(m_c^2 - m_u^2)(m_s^2 - m_d^2) \sin 2\theta = 0$$



-> NO MIXING

same conclusion for 3 families

Renormalizable Potential, mixing three families

Von Neumann Trace Inequality

$$y_u^2 y_b^2 + y_s^2 y_c^2 + y_d^2 y_t^2 \le \operatorname{Tr}\left(\mathcal{Y}_U \mathcal{Y}_U^{\dagger} \mathcal{Y}_D \mathcal{Y}_D^{\dagger}\right) \le y_u^2 y_d^2 + y_s^2 y_c^2 + y_b^2 y_t^2.$$

So the Potential selects:

coefficient in the potential

"normal"
$$g < 0$$
, $V_{CKM} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$; Hierarchy

"inverted"
$$g>0\,, \quad V_{CKM}=\left(egin{array}{ccc} 0 & 0 & 1 \ 0 & 1 & 0 \ 1 & 0 & 0 \end{array}
ight).$$

No mixing, independently of the mass spectrum

Quark Natural Flavour Pattern

Summarizing, a possible and natural breaking pattern arises:

$$\mathcal{G}_{\mathcal{F}}^q : U(3)^3 \to U(2)^3 \times U(1)$$

giving a hierarchical mass spectrum without mixing

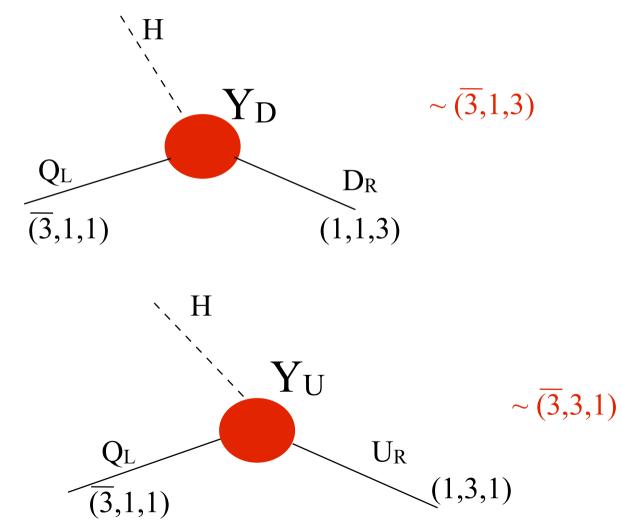
$$\mathcal{Y}_D = \Lambda_f \left(egin{array}{ccc} 0 & 0 & 0 \ 0 & 0 & 0 \ 0 & 0 & y_b \end{array}
ight) \;, \qquad \quad \mathcal{Y}_U = \Lambda_f \left(egin{array}{ccc} 0 & 0 & 0 \ 0 & 0 & 0 \ 0 & 0 & y_t \end{array}
ight) \;,$$

a good approximation to the observed Yukawas to order $(\lambda_C)^2$

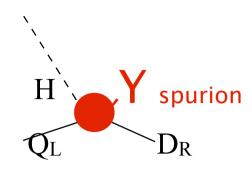
The non-abelian part of the flavour symmetry of the SM:

$$G_f = SU(3)_{Q_L} \times SU(3)_{U_R} \times SU(3)_{D_R}$$

broken by Yukawas:



Some good ideas:



Minimal Flavour Violation:

- Use the flavour symmetry of the SM in the limit of massless fermions (Chivukula+ Georgi)

quarks:
$$G_{flavour} = U(3)_{QL} \times U(3)_{UR} \times U(3)_{DR}$$

- Assume that Yukawas are the only source of flavour in the SM and beyond

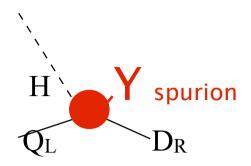
$$\frac{\mathbf{Y}_{\alpha\beta}^{+}\mathbf{Y}_{\delta\gamma}}{\Lambda_{flavour}^{2}} \overline{\mathbf{Q}_{\alpha}} \gamma_{\mu} \mathbf{Q}_{\beta} \overline{\mathbf{Q}_{\gamma}} \gamma^{\mu} \mathbf{Q}_{\delta}$$

... agrees with flavour data being aligned with SM

... allows to bring down $\Lambda_{flavour}$ --> TeV

D'Ambrosio+Giudice+Isidori+Strumia; Cirigliano+Isidori+Grinstein+Wise

Some good ideas:



Minimal Flavour Violation:

- Use the flavour symmetry of the SM in the limit of massless fermions (Chivukula+ Georgi)

quarks: $G_{flavour} = U(3)_{QL} \times U(3)_{UR} \times U(3)_{DR}$

- Assume that Yukawas are the only source of flavour in the SM and beyond

$$\frac{\mathbf{Y}_{\alpha\beta}^{+}\mathbf{Y}_{\delta\gamma}}{\Lambda_{flavour}^{2}} \overline{\mathbf{Q}_{\alpha}} \gamma_{\mu} \mathbf{Q}_{\beta} \overline{\mathbf{Q}_{\gamma}} \gamma^{\mu} \mathbf{Q}_{\delta}$$

... agrees with flavour data being aligned with SM

... allows to bring down $\Lambda_{flavour} --> \text{TeV}$

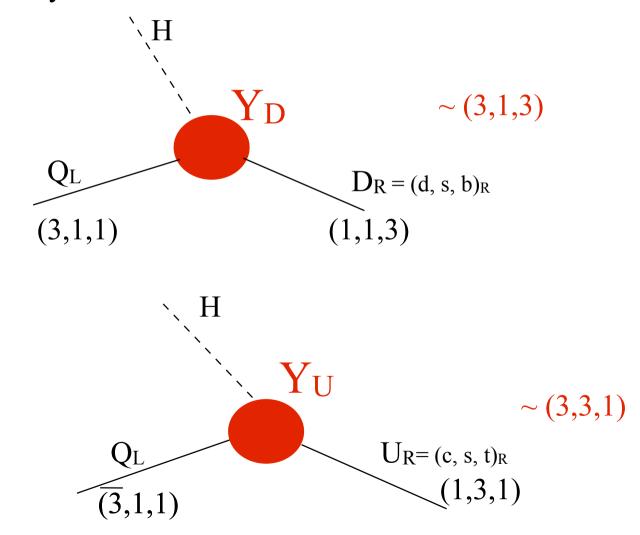
(Chivukula+Georgi 87; Hall+Randall; D'Ambrosio+Giudice+Isidori+Strumia; Cirigliano+Isidori+Grisntein +Wise; Davidson+Pallorini; Kagan+G. Perez + Volanski+Zupan,...)

Lalak, Pokorski, Ross; Fitzpatrick, Perez, Randall; Grinstein, Redi, Villadoro

Use the flavour symmetry of the SM with masless fermions:

$$G_f = U(3)_{Q_L} \times U(3)_{U_R} \times U(3)_{D_R}$$

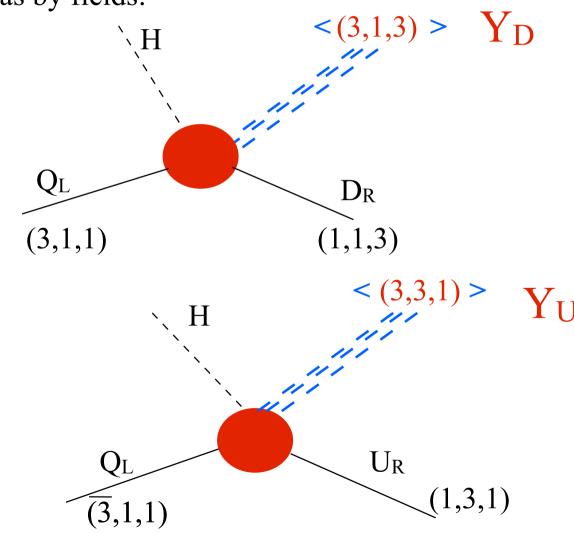
which is broken by Yukawas:



Use the flavour symmetry of the SM with masless fermions:

$$G_f = U(3)_{Q_L} \times U(3)_{U_R} \times U(3)_{D_R}$$

replace Yukawas by fields:



Flavour Fields

The Yukawa Operator has to be explicitly flavour invariant at high energies

$$\overline{Q}_L \frac{\mathcal{Y}}{\Lambda_f} U_R \tilde{H}$$

$$(\bar{3}, 1)$$

$$(Q_L)_{\alpha} \qquad (D_R)_{\beta}$$

$$n = 1 \quad (d=5)$$

A single and therefore "bi-fundamental" field $\mathcal{Y} \sim (3, \bar{3})$

Bi-fundamental Flavour Fields

Physical parameters
=Independent Invariants

d.o.f. in
$$\mathcal{Y}_{U,D}$$
 - $(\dim(\mathcal{G}_{\mathcal{F}}^q) - 1_{U(1)_B}) = 10$
 2×18 $3 \times 9 - 1$

These are (proportional to):

3 masses in de up sector,

3 masses in de down sector,

4 mixing parameters in V_{CKM}

$$\sum_{j} \frac{\partial I_{j}}{\partial y_{i}} \frac{\partial V}{\partial I_{j}} \equiv J_{ij} \frac{\partial V}{\partial I_{j}} = 0,$$

Jacobian Analysis

$$J = \begin{pmatrix} \partial_{\mathbf{y}_U} I_{U^n} & 0 & \partial_{\mathbf{y}_U} I_{UD} \\ 0 & \partial_{\mathbf{y}_D} I_{D^n} & \partial_{\mathbf{y}_D} I_{UD} \\ 0 & 0 & \partial_{\theta_c} I_{UD} \end{pmatrix} \equiv \begin{pmatrix} J_U & 0 & \partial_{\mathbf{y}_U} I_{UD} \\ 0 & J_D & \partial_{\mathbf{y}_D} I_{UD} \\ 0 & 0 & J_{UD} \end{pmatrix}.$$

for the sub-Jacobian which involves only masses we can identify the shape of the *I-manifold*

(Alonso, Gavela, Isidori, Maiani 2013)

Renormalizable Potential

Invariants at the Renormalizable Level

$$I_{U} = \operatorname{Tr} \left[\mathcal{Y}_{U} \mathcal{Y}_{U}^{\dagger} \right], \qquad I_{D} = \operatorname{Tr} \left[\mathcal{Y}_{D} \mathcal{Y}_{D}^{\dagger} \right],$$

$$I_{U^{2}} = \operatorname{Tr} \left[\left(\mathcal{Y}_{U} \mathcal{Y}_{U}^{\dagger} \right)^{2} \right], \qquad I_{D^{2}} = \operatorname{Tr} \left[\left(\mathcal{Y}_{D} \mathcal{Y}_{D}^{\dagger} \right)^{2} \right],$$

$$I_{U^{3}} = \operatorname{Tr} \left[\left(\mathcal{Y}_{U} \mathcal{Y}_{U}^{\dagger} \right)^{3} \right], \qquad I_{D^{3}} = \operatorname{Tr} \left[\left(\mathcal{Y}_{D} \mathcal{Y}_{D}^{\dagger} \right)^{3} \right],$$

$$I_{U,D} = \operatorname{Tr} \left[\mathcal{Y}_{U} \mathcal{Y}_{U}^{\dagger} \mathcal{Y}_{D} \mathcal{Y}_{D}^{\dagger} \right], \qquad I_{U,D^{2}} = \operatorname{Tr} \left[\mathcal{Y}_{U} \mathcal{Y}_{U}^{\dagger} \left(\mathcal{Y}_{D} \mathcal{Y}_{D}^{\dagger} \right)^{2} \right],$$

$$I_{U^{2},D} = \operatorname{Tr} \left[\mathcal{Y}_{U} \mathcal{Y}_{U}^{\dagger} \left(\mathcal{Y}_{D} \mathcal{Y}_{D}^{\dagger} \right)^{2} \right], \qquad I_{(U,D)^{2}} = \operatorname{Tr} \left[\left(\mathcal{Y}_{U} \mathcal{Y}_{U}^{\dagger} \mathcal{Y}_{D} \mathcal{Y}_{D}^{\dagger} \right)^{2} \right].$$

Renormalizable Potential

with the definition

$$X \equiv (I_U, I_D)^T = \left(\operatorname{Tr} \left(\mathcal{Y}_U \mathcal{Y}_U^{\dagger} \right), \operatorname{Tr} \left(\mathcal{Y}_D \mathcal{Y}_D^{\dagger} \right) \right)^T,$$

the potential

$$V^{(4)} = -\mu^{2} \cdot X + X^{T} \cdot \lambda \cdot X + g \operatorname{Tr} \left(\mathcal{Y}_{U} \mathcal{Y}_{U}^{\dagger} \mathcal{Y}_{D} \mathcal{Y}_{D}^{\dagger} \right)$$
$$+ \left(h_{U} \operatorname{Tr} \left(\mathcal{Y}_{U} \mathcal{Y}_{U}^{\dagger} \mathcal{Y}_{U} \mathcal{Y}_{U}^{\dagger} \right) + \left(h_{D} \operatorname{Tr} \left(\mathcal{Y}_{D} \mathcal{Y}_{D}^{\dagger} \mathcal{Y}_{D} \mathcal{Y}_{D}^{\dagger} \right) \right) ,$$

mass spectrum

which contains 8 parameters

Renormalizable Potential

with the definition

$$X \equiv (I_U, I_D)^T = \left(\operatorname{Tr} \left(\mathcal{Y}_U \mathcal{Y}_U^{\dagger} \right), \operatorname{Tr} \left(\mathcal{Y}_D \mathcal{Y}_D^{\dagger} \right) \right)^T,$$

the potential

mixing

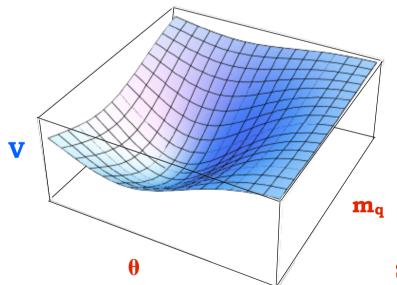
 $V^{(4)} = -\mu^{2} \cdot X + X^{T} \cdot \lambda \cdot X + g \operatorname{Tr} \left(\mathcal{Y}_{U} \mathcal{Y}_{U}^{\dagger} \mathcal{Y}_{D} \mathcal{Y}_{D}^{\dagger} \right)$ $+ h_{U} \operatorname{Tr} \left(\mathcal{Y}_{U} \mathcal{Y}_{U}^{\dagger} \mathcal{Y}_{U} \mathcal{Y}_{U}^{\dagger} \right) + h_{D} \operatorname{Tr} \left(\mathcal{Y}_{D} \mathcal{Y}_{D}^{\dagger} \mathcal{Y}_{D} \mathcal{Y}_{D}^{\dagger} \right) ,$

which contains 8 parameters

e.g. for the case of two families:

$$\text{Tr}(y_u y_u^+ y_d y_d^+) \propto (m_c^2 - m_u^2)(m_s^2 - m_d^2) \cos 2\theta$$

at the minimum:
$$(m_c^2 - m_u^2)(m_s^2 - m_d^2) \sin 2\theta = 0$$



-> NO MIXING

same conclusion for 3 families

Renormalizable Potential, mixing three families

Von Neumann Trace Inequality

$$y_u^2 y_b^2 + y_s^2 y_c^2 + y_d^2 y_t^2 \le \operatorname{Tr}\left(\mathcal{Y}_U \mathcal{Y}_U^{\dagger} \mathcal{Y}_D \mathcal{Y}_D^{\dagger}\right) \le y_u^2 y_d^2 + y_s^2 y_c^2 + y_b^2 y_t^2.$$

So the Potential selects:

coefficient in the potential

"normal"
$$g < 0$$
, $V_{CKM} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$; Hierarchy

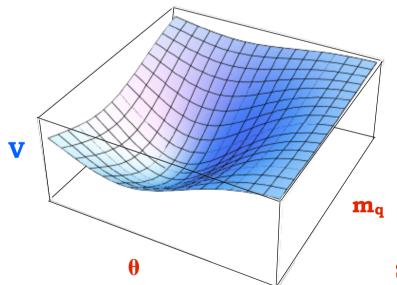
"inverted"
$$g>0\,, \quad V_{CKM}=\left(egin{array}{ccc} 0 & 0 & 1 \ 0 & 1 & 0 \ 1 & 0 & 0 \end{array}
ight).$$

No mixing, independently of the mass spectrum

e.g. for the case of two families:

$$\text{Tr}(y_u y_u^+ y_d y_d^+) \propto (m_c^2 - m_u^2)(m_s^2 - m_d^2) \cos 2\theta$$

at the minimum:
$$(m_c^2 - m_u^2)(m_s^2 - m_d^2) \sin 2\theta = 0$$



-> NO MIXING

same conclusion for 3 families

2 families, leptons; let us analyze the mixing invariant

Using Casas-Ibarra parametrization $\mathbf{Y}_{v} = \mathbf{U}_{PMNS} \, \mathbf{m}_{v}^{1/2} \, \mathbf{R} \, \mathbf{M}_{N}^{1/2}$ it follows that: $\mathbf{Tr}(\, \mathcal{Y}_{E} \, \, \mathcal{Y}_{E}^{+} \, \, \mathcal{Y}_{V} \, \, \mathcal{Y}_{V}^{+}) = \mathbf{Tr}(\, m_{i}^{1/2} \, \, U^{+} \, m_{i}^{2} \, \, U \, m_{i}^{1/2} \, R^{+} \, \mathbf{M}_{N} \, R)$ complex orthogonal; it encodes our ignorance of the high energy theory

* In degenerate limit of heavy neutrinos $M_{N_1}=M_{N_2}=M$

$$\mathbf{R} = \begin{pmatrix} \operatorname{ch} \boldsymbol{\omega} & -i \operatorname{sh} \boldsymbol{\omega} \\ i \operatorname{sh} \boldsymbol{\omega} & \operatorname{ch} \boldsymbol{\omega} \end{pmatrix} \text{ with } \boldsymbol{\omega} \text{ real,}$$

for 2 generations, the mixing terms in $V(y_E, y_V)$ is:

Leptons

$$egin{aligned} &\operatorname{Tr}(\ \mathcal{Y}_{ ext{E}} \ \ \mathcal{Y}_{ ext{E}}^{+} \ \mathcal{Y}_{ ext{V}} \ \ \mathcal{Y}_{ ext{V}}^{+}) \propto \ &(m_{\mu}^{2} - m_{e}^{2}) \Bigg[\cos 2\omega (m_{
u_{2}} - m_{
u_{1}}) \cos 2 heta + 2 \sin 2\omega \sqrt{m_{
u_{2}} m_{
u_{1}}} sin 2lpha \sin 2 heta \Bigg] \end{aligned}$$

where
$$U_{PMNS} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} e^{-i\alpha} & 0 \\ 0 & e^{i\alpha} \end{pmatrix}$$

Quarks

$$\text{Tr}(y_u y_u^+ y_d y_d^+) \propto (m_c^2 - m_u^2)(m_s^2 - m_d^2)\cos 2\theta$$

١

e.g., for 2 generations, the mixing terms in $V(y_E, y_V)$ is:

Leptons

$$ext{Tr}(y_{ ext{E}}|y_{ ext{E}}^+|y_{ ext{V}}|y_{ ext{V}}^+) \propto \ (m_{\mu}^2 - m_e^2) \left[\cos 2\omega (m_{
u_2} - m_{
u_1}) \cos 2 heta + 2 \sin 2\omega \sqrt{m_{
u_2} m_{
u_1}} sin 2lpha \sin 2 heta
ight]$$

This mixing term unphysical if either "up" or "down" fermions degenerate

Mixing physical even with degenerate neutrino masses, if Majorana phase non-trivial

Quarks

$$\text{Tr}(y_u \ y_{u^+} \ y_d \ y_{d^+}) \propto (m_c^2 - m_u^2)(m_s^2 - m_d^2) \cos 2\theta$$

e.g., for 2 generations, the mixing terms in $V(y_E, y_V)$ is:

Minimisation (for non trivial $\sin 2\omega$)

$$\operatorname{Tr}(y_{\mathrm{E}} y_{\mathrm{E}^{+}} y_{\mathrm{V}} y_{\mathrm{V}^{+}})$$

*
$$\sin 2\omega \sqrt{m_{\nu_2}m_{\nu_1}} \sin 2\theta \cos 2\alpha = 0$$
 \longrightarrow $\alpha = \pi/4 \text{ or } 3\pi/4$

Maximal Majorana phase

*
$$tg2\theta = \sin 2\alpha \frac{2\sqrt{m_{\nu_2}m_{\nu_1}}}{m_{\nu_2} - m_{\nu_1}} tgh 2\omega$$

Large angles correlated with degenerate masses

Example: 2 families; consider the renormalizable set of invariants:

The flavour symmetry is
$$G_f = U(2)_L \times U(2)_{E_R} \times O(2)_{N_R}$$

which adds a new invariant for the lepton sector. In total:

Tr (
$$y_{E} \ y_{E}^{+}$$
) Tr ($y_{E} \ y_{E}^{+}$)²

Tr ($y_{V} \ y_{V}^{+}$) Tr ($y_{V} \ y_{V}^{+}$)²

Tr ($y_{E} \ y_{E}^{+} \ y_{V} \ y_{V}^{+}$) \longleftarrow mixing

Tr ($y_{V} \ y_{V}^{+} \ y_{V} \ y_{V}^{T} \ y_{V}^{*}$) \longleftarrow O(2)_N

Example: 2 families; consider the renormalizable set of invariants:

The flavour symmetry is
$$G_f = U(2)_L \times U(2)_{E_R} \times O(2)_{N_R}$$

which adds a new invariant for the lepton sector. In total:

Tr (
$$y_{E} \ y_{E^{+}}$$
) Tr ($y_{E} \ y_{E^{+}}$)²

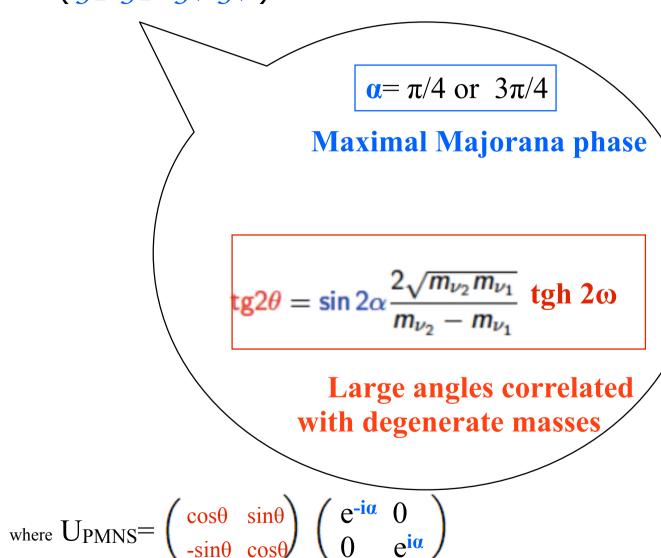
Tr ($y_{V} \ y_{V^{+}}$) Tr ($y_{V} \ y_{V^{+}}$)²

Tr ($y_{E} \ y_{E^{+}} \ y_{V} \ y_{V^{+}}$) \leftarrow mixing

Tr ($y_{V^{+}} \ y_{V} \ (y_{V^{+}} \ y_{V})^{T}$) <--- O(2)_N

e.g., for 2 generations, the mixing terms in $V(y_E, y_V)$ is:

Minimisation of $Tr(y_E y_{E^+} y_v y_{v^+})$



Jacobian

$$J = \begin{pmatrix} \partial_{\mathbf{y}_E} I_{E^n} & 0 & 0 & \partial_{\mathbf{y}_E} I_{L^n} & \partial_{\mathbf{y}_E} I_{LR} \\ 0 & \partial_{\mathbf{y}_{\nu}} I_{\nu^n} & \partial_{\mathbf{y}_{\nu}} I_{R^n} & \partial_{\mathbf{y}_{\nu}} I_{L^n} & \partial_{\mathbf{y}_{\nu}} I_{LR} \\ 0 & 0 & \partial_{\mathcal{U}_R} I_{R^n} & 0 & \partial_{\mathcal{U}_R} I_{LR} \\ 0 & 0 & 0 & \partial_{\mathcal{U}_L} I_{L^n} & \partial_{\mathcal{U}_L} I_{LR} \\ 0 & 0 & 0 & 0 & \partial_{\mathcal{U}_L} I_{L^n} \end{pmatrix},$$

$$\mathrm{Diag}(J) \equiv (J_E, J_{\nu}, J_{\mathcal{U}_R}, J_{\mathcal{U}_L}, J_{LR})$$

Jacobian Analysis: Mixing

What is the symmetry in this boundary?

$$Y_{\nu} = \begin{pmatrix} y_1 & 0 & 0 \\ 0 & \frac{y_2}{\sqrt{2}} & -i\frac{y_2}{\sqrt{2}} \\ 0 & \frac{y_3}{\sqrt{2}} & i\frac{y_3}{\sqrt{2}} \end{pmatrix} \qquad \lambda_3' Y_{\nu} - Y_{\nu} \lambda_7 = 0; \ \lambda_3' = \operatorname{diag}(0, 1, -1) \ ,$$

 $U(1)_{diag}$

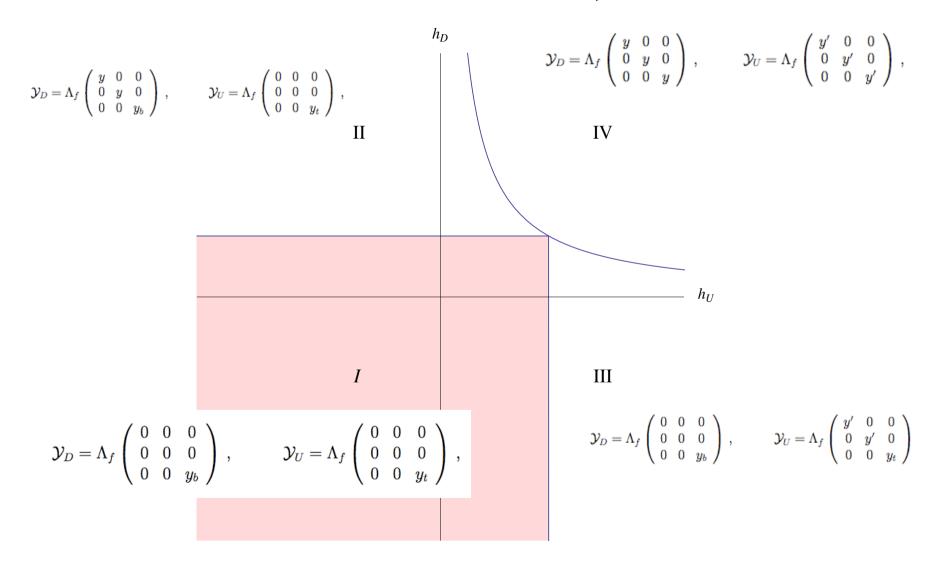
which is extended if the eigenvalues are degenerate

$$Y_{\nu} \to y \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{\sqrt{2}} & -i\frac{1}{\sqrt{2}} \\ 0 & \frac{1}{\sqrt{2}} & i\frac{1}{\sqrt{2}} \end{pmatrix} = yV , \qquad Y_{\nu} \to (V\mathcal{O}V^{\dagger})Y_{\nu}\mathcal{O}^{T} = Y_{\nu} .$$

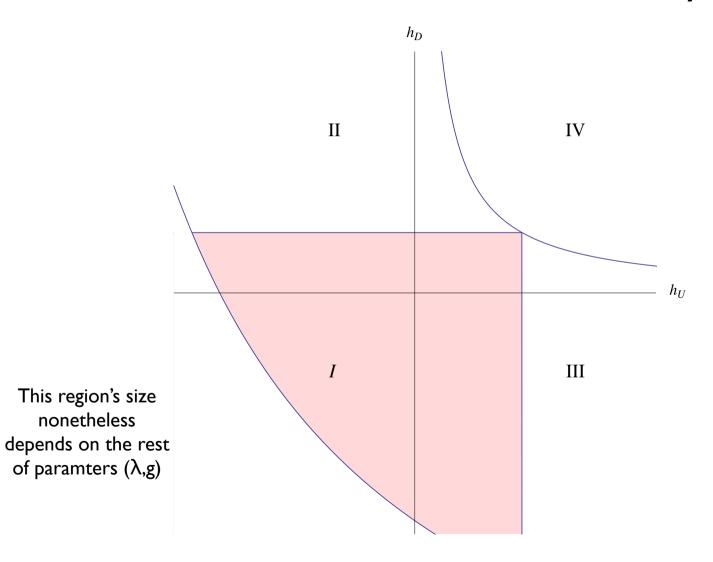
 $O(3)_{diag}$

Renormalizable Potential

Renormalizable Potential, masses



Renormalizable Potential, Stability



Renormalizable Potential

defining

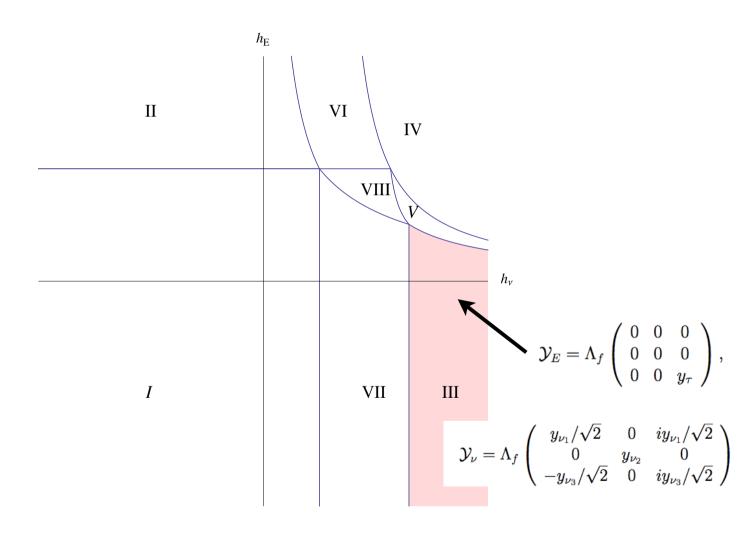
$$\mathbf{X} \equiv \left(\operatorname{Tr} \left(\mathcal{Y}_E \mathcal{Y}_E^{\dagger} \right) , \operatorname{Tr} \left(\mathcal{Y}_{\nu}^{\dagger} \mathcal{Y}_{\nu} \right) \right)^T ,$$

the potential reads:

$$V = -\mu^{2} \cdot \mathbf{X} + \mathbf{X}^{T} \cdot \lambda \cdot \mathbf{X} + h_{E} \operatorname{Tr} \left(\mathcal{Y}_{E} \mathcal{Y}_{E}^{\dagger} \mathcal{Y}_{E} \mathcal{Y}_{E}^{\dagger} \right) + g \operatorname{Tr} \left(\mathcal{Y}_{E} \mathcal{Y}_{E}^{\dagger} \mathcal{Y}_{\nu} \mathcal{Y}_{\nu}^{\dagger} \right)$$
$$+ h_{\nu} \operatorname{Tr} \left(\mathcal{Y}_{\nu} \mathcal{Y}_{\nu}^{\dagger} \mathcal{Y}_{\nu} \mathcal{Y}_{\nu}^{\dagger} \right) + h_{\nu}' \operatorname{Tr} \left(\mathcal{Y}_{\nu} \mathcal{Y}_{\nu}^{T} \mathcal{Y}_{\nu}^{*} \mathcal{Y}_{\nu}^{\dagger} \right) .$$

9 parameters

Renormalizable Potential: Masses



Renormalizable Potential

defining

$$\mathbf{X} \equiv \left(\operatorname{Tr} \left(\mathcal{Y}_E \mathcal{Y}_E^{\dagger} \right) , \operatorname{Tr} \left(\mathcal{Y}_{\nu}^{\dagger} \mathcal{Y}_{\nu} \right) \right)^T ,$$

the potential reads:

$$V = -\mu^{2} \cdot \mathbf{X} + \mathbf{X}^{T} \cdot \lambda \cdot \mathbf{X} + h_{E} \operatorname{Tr} \left(\mathcal{Y}_{E} \mathcal{Y}_{E}^{\dagger} \mathcal{Y}_{E} \mathcal{Y}_{E}^{\dagger} \right) + g \operatorname{Tr} \left(\mathcal{Y}_{E} \mathcal{Y}_{E}^{\dagger} \mathcal{Y}_{\nu} \mathcal{Y}_{\nu}^{\dagger} \right)$$
$$+ h_{\nu} \operatorname{Tr} \left(\mathcal{Y}_{\nu} \mathcal{Y}_{\nu}^{\dagger} \mathcal{Y}_{\nu} \mathcal{Y}_{\nu}^{\dagger} \right) + h_{\nu} \operatorname{Tr} \left(\mathcal{Y}_{\nu} \mathcal{Y}_{\nu}^{\dagger} \mathcal{Y}_{\nu}^{\dagger} \mathcal{Y}_{\nu}^{\dagger} \right).$$

9 parameters

Renormalizable Potential: Mixing

One maximal angle again $h_{\nu}'>0\,,\qquad U_{PMNS}=\left(\begin{array}{ccc} \frac{1}{\sqrt{2}} & \frac{i}{\sqrt{2}} & 0\\ 0 & 0 & 1\\ -\frac{1}{\sqrt{2}} & \frac{i}{\sqrt{2}} & 0 \end{array}\right),$ but not quite in the right place

The solution with a maximal θ_{23} , may arise in a Non-Renormalizable Potential or could be a Local Minima of the Renormalizable Potential

Leptons: G_{flavour} =
$$U(2)_L \times U(2)_{ER} \times ?$$

$$O(2), SU(n), O(n) \dots ?$$

Inmediate results using for both quark and leptons $Y = U_L \ y^{diag} \ U_R$

To analyze this in general, use common parametrization for quarks and leptons:

$$\mathbf{Y} = U_L \ y^{\text{diag.}} U_R$$

* Quarks, for instance: U_R unphysical, $U_L --> U_{CKM}$

$$\mathbf{Y}_{\mathbf{D}} = \mathbf{U}_{\mathbf{CKM}} \operatorname{diag}(y_d, y_s, y_b)$$
; $\mathbf{Y}_{\mathbf{U}} = \operatorname{diag}(y_u, y_c, y_t)$

* Leptons:

$$\mathbf{Y_E} = diag(y_e, y_{\mu}, y_{\tau})$$
; $\mathbf{Y_v} = U_L \ y^{diag.} \ U_R$

Upmns diagonalize
$$m_{\nu} \sim Y_{\nu} \underline{v^2} Y_{\nu}^T = U_L y_{\nu}^{\text{diag.}} U_R \underline{v^2} U_R^T y_{\nu}^{\text{diag.}} U_L^T$$

U(n)

i.e.: $U(3)_L \times U(3)_{E_R} \times U(2)_{N_R}$

or: $U(3)_L \times U(3)_{E_R} \times U(3)_{N_R}$

e.g.
$$U(n)_{NR}$$
 ... leptons

e.g. generic seesaw

$$\mathcal{L} = \mathcal{L}_{SM} + i\overline{N_R} \partial N_R - \left[\overline{N_R} Y_N \tilde{\phi}^{\dagger} \ell_L + \frac{1}{2} \overline{N_R} M N_R^c + h.c. \right]$$

with M carrying flavour \longrightarrow M spurion

More invariants in this case:

$$\begin{array}{ll} {\rm Tr} \, (\ \, \mathcal{Y}_E \ \, \mathcal{Y}_{E^+}) & {\rm Tr} \, (\ \, \mathcal{Y}_E \ \, \mathcal{Y}_{E^+})^2 & {\rm Tr} \, (\ \, \mathcal{Y}_E \ \, \mathcal{Y}_{V^+}) \\ {\rm Tr} \, (\ \, \mathcal{Y}_V \ \, \mathcal{Y}_{V^+}) & {\rm Tr} \, (\ \, \mathcal{Y}_V \ \, \mathcal{Y}_{V^+})^2 & {\rm Tr} \, (\ \, \mathcal{M}_N \ \, \mathcal{M}_N^+) & {\rm Tr} \, (\ \, \mathcal{M}_N \ \, \mathcal{M}_N^+)^2 & {\rm Tr} \, (\ \, \mathcal{M}_N \ \, \mathcal{M}_N \ \, \mathcal{M}_N^+)^2 & {\rm Tr} \, (\ \, \mathcal{M}_N \ \, \mathcal{M}_N \ \, \mathcal{M}_$$

Result: no mixing for flavour groups U(n)

SU(n)

e.g.
$$SU(n)_{NR}$$
 ... leptons

e.g. generic seesaw

$$\mathcal{L} = \mathcal{L}_{SM} + i\overline{N_R} \partial N_R - \left[\overline{N_R} Y_N \tilde{\phi}^{\dagger} \ell_L + \frac{1}{2} \overline{N_R} M N_R^c + h.c. \right]$$

with M carrying flavour \longrightarrow M spurion

More invariants in this case:

Tr
$$(\mathcal{Y}_{E} \mathcal{Y}_{E^{+}})$$
 Tr $(\mathcal{Y}_{E} \mathcal{Y}_{E^{+}})^{2}$ Tr $(\mathcal{Y}_{E} \mathcal{Y}_{E^{+}} \mathcal{Y}_{v} \mathcal{Y}_{v^{+}})$

Tr
$$(y_v y_{v^+})$$
 Tr $(y_v y_{v^+})^2$

$$\operatorname{Tr}(M_{N}M_{N}^{+}) \operatorname{Tr}(M_{N}M_{N}^{+})^{2} \operatorname{Tr}(M_{N}M_{N}^{+}\mathcal{Y}_{v}^{+}\mathcal{Y}_{v})$$

At the minimum:

* Tr
$$(y_v y_v^+ y_E y_E^+) = Tr (U_L y_v^{\text{diag. 2}} U_L^+ y_l^{\text{diag. 2}}) \longrightarrow U_L = 1$$

* Tr
$$(M_N M_N^+ y_v y_v^+) = \text{Tr} (U_R y_v^{\text{diag. 2}} U_R^+ M_i^{\text{diag. 2}}) \longrightarrow U_R = 1$$

same conclusion for 3 families of quarks:

$$\mathbf{Y} = U_L \ y^{\text{diag.}} U_R$$

* Quarks, for instance: U_R unphysical, U_L --> U_{CKM}

$$\mathbf{Y}_{\mathbf{D}} = \mathbf{U}_{\mathbf{CKM}} \operatorname{diag}(y_d, y_s, y_b)$$
; $\mathbf{Y}_{\mathbf{U}} = \operatorname{diag}(y_u, y_c, y_t)$

$$Tr (y_u y_u^+ y_d y_d^+) = Tr (U_L y_u^{diag. 2} U_L^+ y_d^{diag. 2})$$

 \longrightarrow U_L=U_{CKM} ~1 at the minimum

NO MIXING

O(n)

Can its minimum correspond <u>naturally</u> to the observed masses and mixings?

i.e. with all dimensionless λ 's ~ 1

and dimensionful $\mu's \subseteq \Lambda_f$

Y --> one single field Σ

Spectrum for flavons Σ in the bifundamental:

* 3 generations: for the largest fraction of the parameter space, the stable solution is a degenerate spectrum

$$\left(\begin{array}{ccc} y_{u} & & \\ & y_{c} & \\ & & y_{t} \end{array}\right) \sim \left(\begin{array}{ccc} y & & \\ & y & \\ & & y \end{array}\right)$$

instead of the observed hierarchical spectrum, i.e.

$$\left(\begin{array}{ccc} y_{u} & y_{c} \\ & y_{t} \end{array}\right) \sim \left(\begin{array}{cccc} 0 & 0 & \\ & y & \end{array}\right)$$

(at leading order)

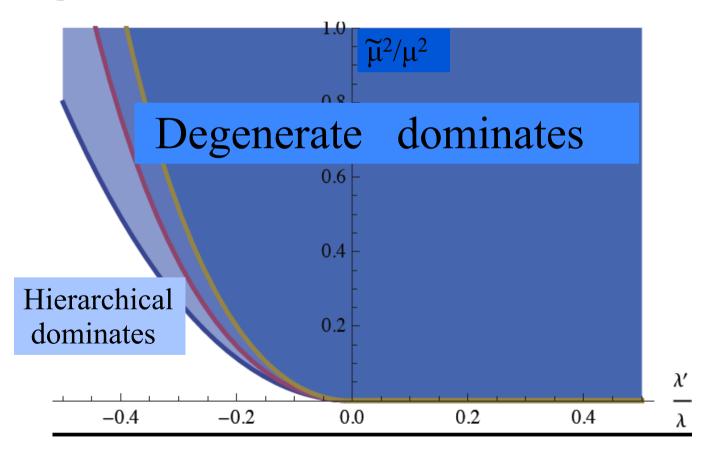
Spectrum: the hierarchical solution is unstable in most of the parameter space.

Stability:
$$\frac{\tilde{\mu}^2}{\mu^2} < \frac{2\lambda'^2}{\lambda}$$

meter space. Stability:
$$\frac{\tilde{\mu}^2}{\mu^2} < \frac{2\lambda'^2}{\lambda}$$
$$V^{(4)} = \sum_{i=u,d} \left(-\mu_i^2 A_i + \tilde{\mu}_i B_i + \lambda_i A_i^2 + \lambda_i' A_{ii} \right) + g_{ud} A_u A_d + \lambda_{ud} A_{ud} \,.$$

ie, the u-part:

$$V^{(4)} = -\mu_u^2 A_u + \tilde{\mu}_u B_u + \lambda_u A_u^2 + \lambda_u' A_{uu}$$

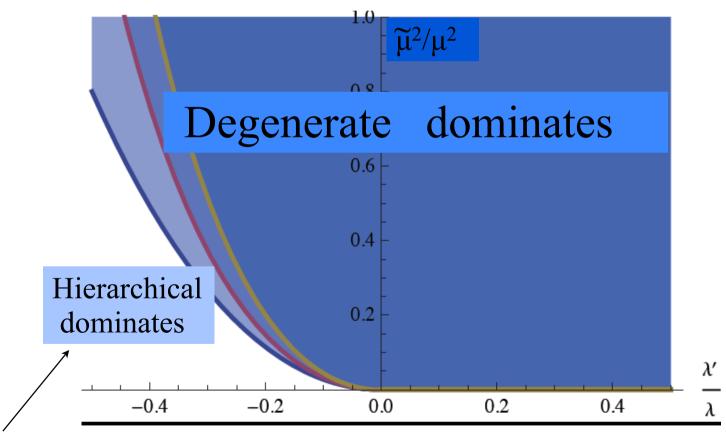


Spectrum: the hierarchical solution is unstable in most of the parameter space. $\tilde{\mu}^2 = 2\lambda'^2$

meter space. Stability:
$$\frac{\tilde{\mu}^2}{\mu^2} < \frac{2\lambda'^2}{\lambda}$$
$$V^{(4)} = \sum_{i=u,d} \left(-\mu_i^2 A_i + \tilde{\mu}_i B_i + \lambda_i A_i^2 + \lambda_i' A_{ii} \right) + g_{ud} A_u A_d + \lambda_{ud} A_{ud}.$$

ie, the u-part:

$$V^{(4)} = -\mu_u^2 A_u + \tilde{\mu}_u B_u + \lambda_u A_u^2 + \lambda_u' A_{uu}$$



Nardi emphasized this solution (and extended the analysis to include also U(1) factors)

Normal hierarchy:

Up to terms of $\mathcal{O}(\sqrt{r}, s_{13})$, we find

$$r = \frac{|\Delta m_{12}^2|}{|\Delta m_{13}^2|}$$

$$Y_N^T \simeq y \left(egin{array}{c} e^{i\delta} s_{13} + e^{-ilpha} s_{12} r^{1/4} \ s_{23} \left(1 - rac{\sqrt{r}}{2}
ight) + e^{-ilpha} r^{1/4} c_{12} c_{23} \ c_{23} \left(1 - rac{\sqrt{r}}{2}
ight) - e^{-ilpha} r^{1/4} c_{12} s_{23} \end{array}
ight) \; .$$

Inverted hierarchy:

$$Y_N^T \simeq \frac{y}{\sqrt{2}} \left(\begin{array}{c} c_{12}e^{i\alpha} + s_{12}e^{-i\alpha} \\ c_{12} \left(c_{23}e^{-i\alpha} - s_{23}s_{13}e^{i(\alpha-\delta)} \right) - s_{12} \left(c_{23}e^{i\alpha} + s_{23}s_{13}e^{-i(\alpha+\delta)} \right) \\ -c_{12} \left(s_{23}e^{-i\alpha} + c_{23}s_{13}e^{i(\alpha-\delta)} \right) + s_{12} \left(s_{23}e^{i\alpha} - c_{23}s_{13}e^{-i(\alpha+\delta)} \right) \end{array} \right)$$

The invariants can be written in terms of masses and mixing

* two families:

$$<\Sigma_{\rm d}> = \Lambda_{\rm f}$$
 . diag $(y_{\rm d})$; $<\Sigma_{\rm u}> = \Lambda_{\rm f}$. $V_{\rm Cabibbo}$ diag $(y_{\rm u})$

$$Y_D = \begin{pmatrix} y_d & 0 \\ 0 & y_s \end{pmatrix}$$
, $Y_U = \mathcal{V}_C^{\dagger} \begin{pmatrix} y_u & 0 \\ 0 & y_c \end{pmatrix}$ $V_{\text{Cabibbo}} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$

$$<$$
Tr $(\Sigma_u \Sigma_u^+)> = \Lambda_f^2 (y_u^2 + y_c^2); <$ det $(\Sigma_u)> = \Lambda_f^2 y_u y_c$

$$<$$
Tr $(\Sigma_u \Sigma_u^+ \Sigma_d \Sigma_d^+)>=\Lambda_f^4 [(y_c^2 - y_u^2) (y_s^2 - y_d^2) \cos 2\theta +...]/2$

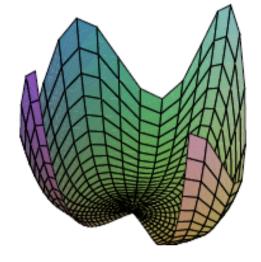
Dimension 5 Yukawa Operator

The minimum of the Potential is given by:

$$\frac{\partial V}{\partial y_i} = 0$$
 $\frac{\partial V}{\partial \theta_i} = 0$

Take the angle for example:

$$\frac{\partial V}{\partial \theta_c} \propto \left(y_c^2 - y_u^2 \right) \left(y_s^2 - y_d^2 \right) \sin 2\theta_c = 0$$



Non-degenerate masses $\longrightarrow \sin 2\theta_c = 0$ No mixing!

Notice also that
$$\frac{\partial V^{(4)}}{\partial \theta} \sim \sqrt{J}$$
 (Jarlskog determinant)

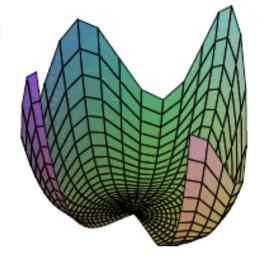
Dimension 5 Yukawa Operator

The minimum of the Potential is given by:

$$\frac{\partial V}{\partial y_i} = 0$$
 $\frac{\partial V}{\partial \theta_i} = 0$

Take the angle for example:

$$\frac{\partial V}{\partial \theta_c} \propto \left(y_c^2 - y_u^2 \right) \left(y_s^2 - y_d^2 \right) \sin 2\theta_c = 0$$



Non-degenerate masses $\longrightarrow \sin 2\theta_c = 0$ No mixing!

Can the actual masses and mixings fit naturally in the minimum of the Potential? e.g. adding non-renormalizable terms...

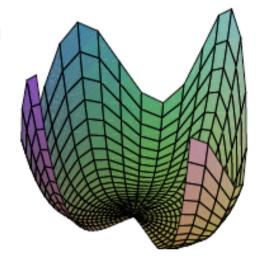
Dimension 5 Yukawa Operator

The minimum of the Potential is given by:

$$\frac{\partial V}{\partial y_i} = 0$$
 $\frac{\partial V}{\partial \theta_i} = 0$

Take the angle for example:

$$\frac{\partial V}{\partial \theta_c} \propto \left(y_c^2 - y_u^2 \right) \left(y_s^2 - y_d^2 \right) \sin 2\theta_c = 0$$



Non-degenerate masses
$$\sin 2\theta_c = 0$$
 No mixing!

Can the actual masses and mixings fit naturally in the minimum of the Potential? e.g. adding non-renormalizable terms...

- * Without fine-tuning, for two families the spectrum is degenerate
- * To accomodate realistic mixing one must introduce wild fine tunnings of O(10⁻¹⁰) and nonrenormalizable terms of dimension 8

three families

* at renormalizable level: 7 invariants instead of the 5 for two families

$$\begin{split} \operatorname{Tr}\left(\Sigma_{u}\Sigma_{u}^{\dagger}\right) &\stackrel{vev}{=} \Lambda_{f}^{2}\left(y_{t}^{2}+y_{c}^{2}+y_{u}^{2}\right)\,, \qquad \qquad Det\left(\Sigma_{u}\right) \stackrel{vev}{=} \Lambda_{f}^{3}y_{u}y_{c}y_{t}\,, \\ \operatorname{Tr}\left(\Sigma_{d}\Sigma_{d}^{\dagger}\right) &\stackrel{vev}{=} \Lambda_{f}^{2}\left(y_{b}^{2}+y_{s}^{2}+y_{d}^{2}\right)\,, \qquad \qquad Det\left(\Sigma_{d}\right) |\stackrel{vev}{=} \Lambda_{f}^{3}y_{d}y_{s}y_{b}\,, \\ &= \operatorname{Tr}\left(\Sigma_{u}\Sigma_{u}^{\dagger}\Sigma_{u}\Sigma_{u}^{\dagger}\right) \stackrel{vev}{=} \Lambda_{f}^{4}\left(y_{t}^{4}+y_{c}^{4}+y_{u}^{4}\right)\,, \\ &= \operatorname{Tr}\left(\Sigma_{d}\Sigma_{d}^{\dagger}\Sigma_{d}\Sigma_{d}^{\dagger}\right) \stackrel{vev}{=} \Lambda_{f}^{4}\left(y_{b}^{4}+y_{s}^{4}+y_{d}^{4}\right)\,, \\ &= \operatorname{Tr}\left(\Sigma_{u}\Sigma_{u}^{\dagger}\Sigma_{d}\Sigma_{d}^{\dagger}\right) \stackrel{vev}{=} \Lambda_{f}^{4}\left(P_{0}+P_{int}\right)\,, \\ &\operatorname{Interesting\ angular\ dependence:} \quad P_{0} \equiv -\sum_{i < j}\left(y_{u_{i}}^{2}-y_{u_{j}}^{2}\right)\left(y_{d_{i}}^{2}-y_{d_{j}}^{2}\right) \sin^{2}\theta_{ij}\,, \\ &P_{int} \equiv \sum_{i < j, k}\left(y_{d_{i}}^{2}-y_{u_{j}}^{2}\right)\left(y_{u_{j}}^{2}-y_{u_{k}}^{2}\right) \sin^{2}\theta_{13} \sin^{2}\theta_{23}\,+ \\ &\qquad \qquad -\left(y_{d}^{2}-y_{s}^{2}\right)\left(y_{c}^{2}-y_{t}^{2}\right) \sin^{2}\theta_{12} \sin^{2}\theta_{23} \sin\theta_{13}\,, \\ &\qquad \qquad +\frac{1}{2}\left(y_{d}^{2}-y_{s}^{2}\right)\left(y_{c}^{2}-y_{t}^{2}\right) \cos\delta\sin2\theta_{12} \sin2\theta_{23} \sin\theta_{13}\,, \end{split}$$

The real, unavoidable, problem is again mixing:

* Just one source:

Tr
$$\left(\sum_{u}\sum_{u}^{+}\sum_{d}\sum_{d}^{+}\right) = \Lambda_{f}^{4}\left(P_{0} + P_{int}\right)$$

 P_0 and P_{int} encode the angular dependence,

$$\begin{split} P_0 &\equiv -\sum_{i < j} \left(y_{u_i}^2 - y_{u_j}^2 \right) \left(y_{d_i}^2 - y_{d_j}^2 \right) \sin^2 \theta_{ij} \,, \\ P_{int} &\equiv \sum_{i < j,k} \left(y_{d_i}^2 - y_{d_k}^2 \right) \left(y_{u_j}^2 - y_{u_k}^2 \right) \sin^2 \theta_{ik} \sin^2 \theta_{jk} \,+ \\ &- \left(y_d^2 - y_s^2 \right) \left(y_c^2 - y_t^2 \right) \sin^2 \theta_{12} \sin^2 \theta_{13} \sin^2 \theta_{23} \,+ \\ &+ \frac{1}{2} \left(y_d^2 - y_s^2 \right) \left(y_c^2 - y_t^2 \right) \cos \delta \, \sin 2\theta_{12} \sin 2\theta_{23} \sin \theta_{13} \,, \end{split}$$

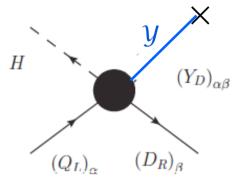
Sad conclusions as for 2 families:

needs non-renormalizable + super fine-tuning

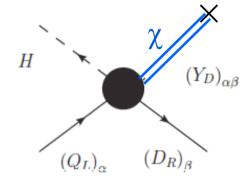
*a good possibility for the other angles:

Yukawas --> add fields in the fundamental of the flavour group

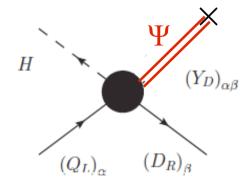
1) Y -- > one single scalar $y \sim (3, 1, 3)$



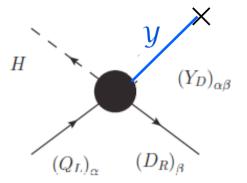
2) Y --- > two scalars $\chi \chi^+ \sim (3, 1, 3)$



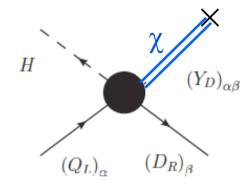
3) Y -- > two fermions $\overline{\Psi}\Psi \sim (3, 1, 3)$



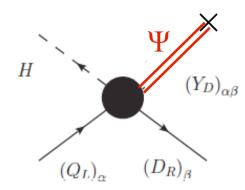
1) Y -- > one single scalar $y \sim (3, 1, 3)$



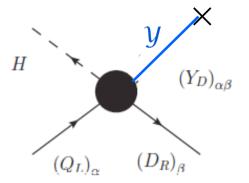
2) Y --- > two scalars $\chi \chi^+ \sim (3, 1, 3)$ $\chi \sim (3, 1, 1)$



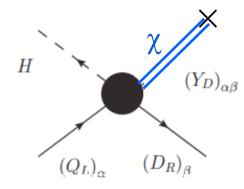
3) Y -- > two fermions $\Psi\Psi \sim (3, 1, 3)$



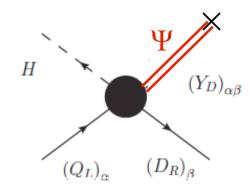
1) Y -- > one single scalar $y \sim (3, 1, 3)$ d=5 operator



2) Y -- > two scalars $\chi \chi^+ \sim (3, 1, 3)$ d=6 operator $\chi \sim (3, 1, 1)$



3) Y -- > two fermions $\Psi\Psi \sim (3, 1, 3)$ d=7 operator



Y --> quadratic in fields χ

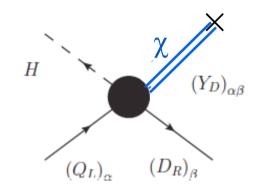
$$\mathbf{Y} \sim \frac{\langle \chi \chi^{\dagger} \rangle}{\Lambda_{\mathbf{f}}^2}$$

 $(D_R)_{\beta}$

Holds for 2 and 3 families!

2) Y --> quadratic in fields χ

$$Y \sim \frac{\langle \chi \chi^{\dagger} \rangle}{\Lambda_f^2}$$



i.e.
$$Y_D \sim \chi^L_d (\chi^R_d)^+ \sim (3, 1, 1) (1, 1, \overline{3}) \sim (3, 1, \overline{3})$$

$$\Lambda_f^2$$

Y --> quadratic in fields χ

It is very simple:

- a square matrix built out of 2 vectors

$$\begin{pmatrix} \mathbf{d} \\ \mathbf{e} \\ \mathbf{f} \\ \vdots \end{pmatrix} (a, b, c \dots)$$

has only one non-vanishing eigenvalue

strong mass hierarchy at leading order:

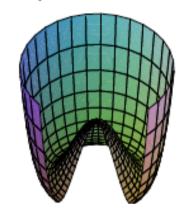
- -- only 1 heavy "up" quark
- -- only 1 heavy "down" quark

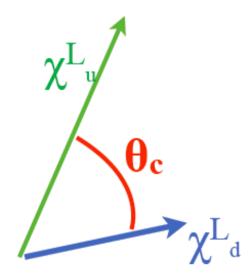
only $|\chi|$'s relevant for scale

Dimension 6 Yukawa Operator

The invariants are:

$$\begin{split} \chi_u^{L\dagger}\chi_u^L, & \chi_u^{R\dagger}\chi_u^R, & \chi_d^{L\dagger}\chi_d^L, \\ \chi_d^{R\dagger}\chi_d^R, & \chi_u^{L\dagger}\chi_d^L = \left|\chi_u^L\right|\left|\chi_d^L\right|\cos\theta_c\,. \end{split}$$





 θ_c is the angle between up and down L vectors

Dimension 6 Yukawa Operator

The invariants are:

$$\begin{aligned} \chi_u^{L\dagger} \chi_u^L, & \chi_u^{R\dagger} \chi_u^R, & \chi_d^{L\dagger} \chi_d^L, \\ \chi_d^{R\dagger} \chi_d^R, & \chi_u^{L\dagger} \chi_d^L = \left| \chi_u^L \right| \left| \chi_d^L \right| \cos \theta_c \,. \end{aligned}$$

We can fit the angle and the masses in the Potential; as an example:

$$V' = \lambda_u \left(\chi_u^{L\dagger} \chi_u^L - \frac{\mu_u^2}{2\lambda_u} \right)^2 + \lambda_d \left(\chi_d^{L\dagger} \chi_d^L - \frac{\mu_d^2}{2\lambda_d} \right)^2 + \lambda_{ud} \left(\chi_u^{L\dagger} \chi_d^L - \frac{\mu_{ud}^2}{2\lambda_{ud}} \right)^2 + \cdots$$

Whose minimum sets (2 generations):

$$y_c^2 = \frac{\mu_u^2}{2\lambda_u \Lambda_f^2} \quad y_s^2 = \frac{\mu_d^2}{2\lambda_d \Lambda_f^2} \quad \cos \theta = \frac{\mu_{ud}^2 \sqrt{\lambda_u \lambda_d}}{\mu_u \mu_d \lambda_{ud}}$$

Y --> quadratic in fields χ

Towards a realistic 3 family spectrum

e.g. replicas of
$$\chi^L$$
 , χ^R_u , χ^R_d ???

Suggests sequential breaking:

$$SU(3)^{3} \xrightarrow{\mathbf{mt, mb}} SU(2)^{3} \xrightarrow{\mathbf{mc, ms, \theta_{C}}} \cdots$$

$$Y_{u} \equiv \frac{\langle \chi^{L} \rangle \langle \chi_{u}^{R\dagger} \rangle}{\Lambda_{f}^{2}} + \frac{\langle \chi_{u}^{\prime L} \rangle \langle \chi_{u}^{\prime R\dagger} \rangle}{\Lambda_{f}^{2}} = \begin{pmatrix} 0 & \sin \theta \, y_{c} & 0 \\ 0 & \cos \theta \, y_{c} & 0 \\ 0 & 0 & y_{t} \end{pmatrix}$$

$$Y_{d} \equiv \frac{\langle \chi^{L} \rangle \langle \chi_{d}^{R\dagger} \rangle}{\Lambda_{f}^{2}} + \frac{\langle \chi_{d}^{\prime L} \rangle \langle \chi_{d}^{\prime R\dagger} \rangle}{\Lambda_{f}^{2}} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & y_{s} & 0 \\ 0 & 0 & y_{b} \end{pmatrix}.$$

* From bifundamentals:
$$\langle y_{\mathbf{u}} \rangle = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & y_t \end{pmatrix}$$

$$< y_{d} > = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & y_{b} \end{pmatrix}$$

* From fundamentals χ : y_c , y_s and θ_C

Y --> quadratic in fields χ

Towards a realistic 3 family spectrum

e.g. replicas of
$$\chi^L$$
 , χ^R_u , χ^R_d ???

Suggests sequential breaking:

i.e. for quarks, a possible path:

* At leading (renormalizable) order:

$$Y_{u} \equiv \frac{\langle \mathcal{Y}_{u} \rangle}{\Lambda_{f}} + \frac{\langle \chi_{u}^{L} \rangle \langle \chi_{u}^{R\dagger} \rangle}{\Lambda_{f}^{2}} = \begin{pmatrix} 0 & \sin \theta_{c} y_{c} & 0 \\ 0 & \cos \theta_{c} y_{c} & 0 \\ 0 & 0 & y_{t} \end{pmatrix},$$

$$Y_{d} \equiv \frac{\langle \mathcal{Y}_{d} \rangle}{\Lambda_{f}} + \frac{\langle \chi_{d}^{L} \rangle \langle \chi_{d}^{R\dagger} \rangle}{\Lambda_{f}^{2}} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & y_{s} & 0 \\ 0 & 0 & y_{b} \end{pmatrix}.$$

without unnatural fine-tunings

* The masses of the first family and the other angles from nonrenormalizable terms or other corrections or replicas?

....and analogously for leptonic mixing?

Y --> linear + quadratic in fields

Towards a realistic 3 family spectrum

Combining fundamentals and bi-fundamentals

i.e. combining d=5 and d=6 Yukawa operators

$$\Sigma_u \sim (3, \overline{3}, 1) , \qquad \Sigma_d \sim (3, 1, \overline{3}) , \qquad \Sigma_R \sim (1, 3, \overline{3}) ,$$

$$\chi_u^L \in (3, 1, 1) , \qquad \chi_u^R \in (1, 3, 1) , \qquad \chi_d^L \in (3, 1, 1) , \qquad \chi_d^R \in (1, 1, 3) .$$

The Yukawa Lagrangian up to the second order in $1/\Lambda_f$ is given by:

$$\mathscr{L}_{Y} = \overline{Q}_{L} \left[\frac{\Sigma_{d}}{\Lambda_{f}} + \frac{\chi_{d}^{L} \chi_{d}^{R\dagger}}{\Lambda_{f}^{2}} \right] D_{R} H + \overline{Q}_{L} \left[\frac{\Sigma_{u}}{\Lambda_{f}} + \frac{\chi_{u}^{L} \chi_{u}^{R\dagger}}{\Lambda_{f}^{2}} \right] U_{R} \tilde{H} + \text{h.c.},$$

LHC is more competitive for concrete seesaw models:

Low M, large Y is typical of seesaws with approximate Lepton Number conservation

 $U(1)_{LN}$

(-> ~ degenerate heavy neutrinos)

These models separate the flavor and the lepton number scale

Wyler+Wolfenstein 83, Mohapatra+Valle 86, Branco+Grimus+Lavoura 89, Gonzalez-Garcia+Valle 89, Ilakovac+Pilaftsis 95, Barbieri+Hambye+Romanino 03, Raidal+Strumia+Turzynski 05, Kersten+Smirnov 07, Abada+Biggio+Bonnet+Gavela+Hambye 07, Shaposhnikov 07, Asaka+Blanchet 08, Gavela+Hambye+D. Hernandez+ P. Hernandez 09

For instance, in the minimal seesaw I, Lepton number scale and flavour scale linked:

$$\mathcal{L}_{M_{\nu}} = \begin{pmatrix} 0 & \mathbf{Y}^{T} \mathbf{v} \\ \\ \mathbf{Y} \mathbf{v} & \mathbf{M} \end{pmatrix}$$

$$-\mathcal{L}_{\text{seesaw I}} = \overline{L} H Y_E E_R + \overline{L} \widetilde{H} Y N + M \overline{N} N^c + h.c.$$

$$m_v = Y \underline{v^2} Y^T$$

$$U_{IN} \sim \underline{\frac{Yv}{M}}$$

* What is the role of the neutrino flavour group?

e.g. $O(2)_{NR}$... leptons

e.g. seesaw with approximately conserved lepton number

$$\mathcal{L}_{\mathcal{M}_{
u}} = \left(\bar{\ell}_{L}\,,\,ar{N}^{c}\,,\,ar{N}^{\prime c}
ight) \left(egin{array}{ccc} 0 & vY & vY' \ vY^{T} & 0 & \mathbf{M}^{\mathrm{T}} \ vY^{\prime T} & \mathbf{M} & 0 \end{array}
ight) \left(egin{array}{c} \ell_{L}^{c} \ N \ N' \end{array}
ight)$$

* What is the role of the neutrino flavour group?

e.g.
$$O(2)_{NR}$$
 ... leptons

e.g. seesaw with approximately conserved lepton number

$$\mathcal{L}_{mass} = \overline{\ell}_L \phi \underline{Y}_E E_R + \overline{\ell}_L \widetilde{\phi} \underline{\tilde{Y}}_{\nu} (N_1, N_2)^T + M(\overline{N}_1 N_1^c + \overline{N}_2 N_2^c) + h.c.$$

$$ilde{Y}_{
u} = rac{1}{\sqrt{2}} U_{PMNS} f_{m_{
u}} \left(egin{array}{cc} y + y' & -i(y - y') \ i(y - y') & y + y' \end{array}
ight)$$

$$U(3)_{\ell_L} \times U(3)_{E_R} \times O(2)_N$$

$$Y_E = \frac{\langle y_E \rangle}{\Lambda_f} \sim (3, \bar{3}, 1); \quad (Y, Y') = \frac{\langle y_v \rangle}{\Lambda} \sim (3, 1, 2)$$

$$< y_{E}> \propto \left(egin{array}{ccc} m_{e} & 0 & 0 \\ 0 & m_{\mu} & 0 \\ 0 & 0 & m_{ au} \end{array}
ight) \ < y_{v}> \propto U_{PMNS} \left(egin{array}{ccc} 0 & 0 \\ \sqrt{m_{
u_{2}}} & 0 \\ 0 & \sqrt{m_{
u_{3}}} \end{array}
ight) \left(egin{array}{ccc} -\emph{iy} & \emph{iy}' \\ \emph{y} & \emph{y}' \end{array}
ight)$$

*In the O(2)model used before:
$$tgh 2\omega = \frac{y^2-y^{'2}}{y^2-y^{'2}}$$
 and

$$tg2\theta = \sin 2\alpha \frac{2\sqrt{m_{\nu_2}m_{\nu_1}}}{m_{\nu_2} - m_{\nu_1}} \frac{y^2 - y^2}{y^2 - y^2}$$

$$\alpha = \pi/4 \text{ or } 3\pi/4$$

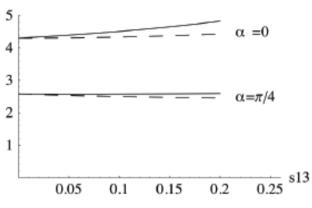
*If we had used instead a flavor SU(2)model $\sinh 2\omega = 0$ -->NO MIXING

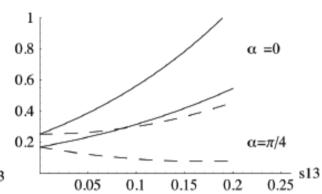
* e- μ , μ - τ etc. oscillations and rare decays studied:

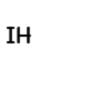
Gavela, Hambye, Hernandez 2 ; $Br(\mu \to e\gamma)/Br(\tau \to e\gamma)$ $Br(\mu \to e\gamma)/Br(\tau \to \mu\gamma)$

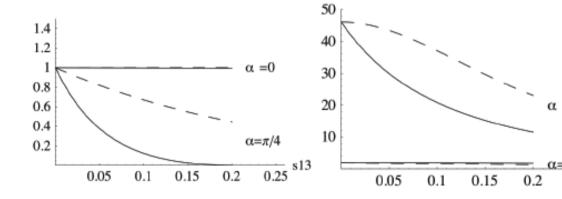
$$Br(\mu \to e\gamma)/Br(\tau \to \mu\gamma)$$

NH









Gavela, Hambye, Hernandez²; Degeneracy in the Majorana phase α

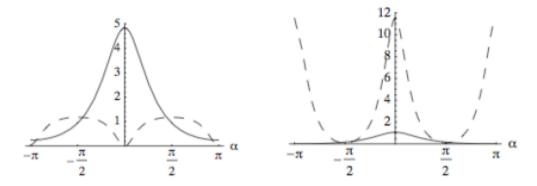


Figure 3: Left: Ratio $B_{e\mu}/B_{e\tau}$ for the normal hierarchy (solid) and the inverse hierarchy (dashed) as a function of α for $(\delta, s_{13}) = (0, 0.2)$. Right: the same for the ratio $B_{e\mu}/B_{\mu\tau}$.

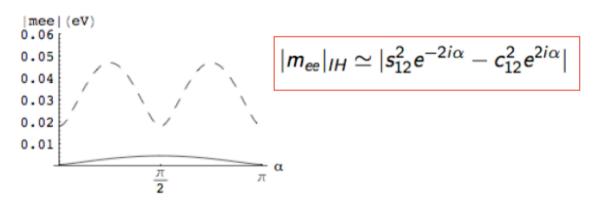


Figure 5: m_{ee} as a function of α for the normal (solid) and inverted (dashed) hierarchies, for $(\delta, s_{13}) = (0, 0.2)$.

Gavela, Hambye, Hernandez²;

i.e.
$$B_{\mu\to e\gamma} \propto |Y_{N_e}Y_{N_\mu}|^2 \qquad \text{for large θ_{13}}$$

$$Y_N^T \simeq y \left(\begin{array}{c} e^{i\delta}s_{13} + e^{-i\alpha}s_{12}r^{1/4} \\ s_{23}\left(1-\frac{\sqrt{r}}{2}\right) + e^{-i\alpha}r^{1/4}c_{12}c_{23} \\ c_{23}\left(1-\frac{\sqrt{r}}{2}\right) - e^{-i\alpha}r^{1/4}c_{12}s_{23} \end{array}\right) \qquad r = \frac{|\Delta m_{12}^2|}{|\Delta m_{13}^2|}$$
 Normal hierarchy

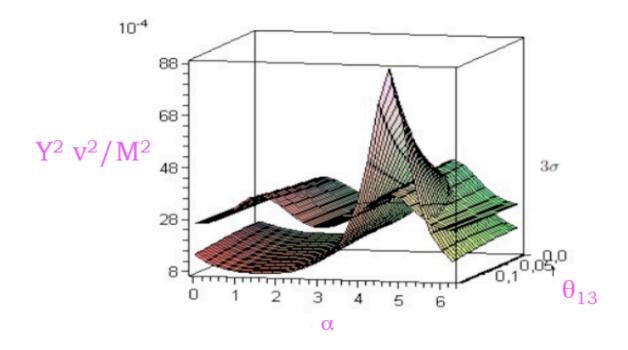
* Alonso + Li, 2010, MINSIS report: possible suppresion of μ -e transitions for large θ_{13}

- * e- μ , μ - τ etc. oscillations and rare decays studied: Gavela, Hambye, Hernandez² 09;
- * Alonso + Li, 2010: possible suppression of μ -e transitions ->important impact of ν_{μ} ν_{τ} at a near detectors

$$B_{\mu o e \gamma} \propto |Y_{N_e} Y_{N_\mu}|^2$$

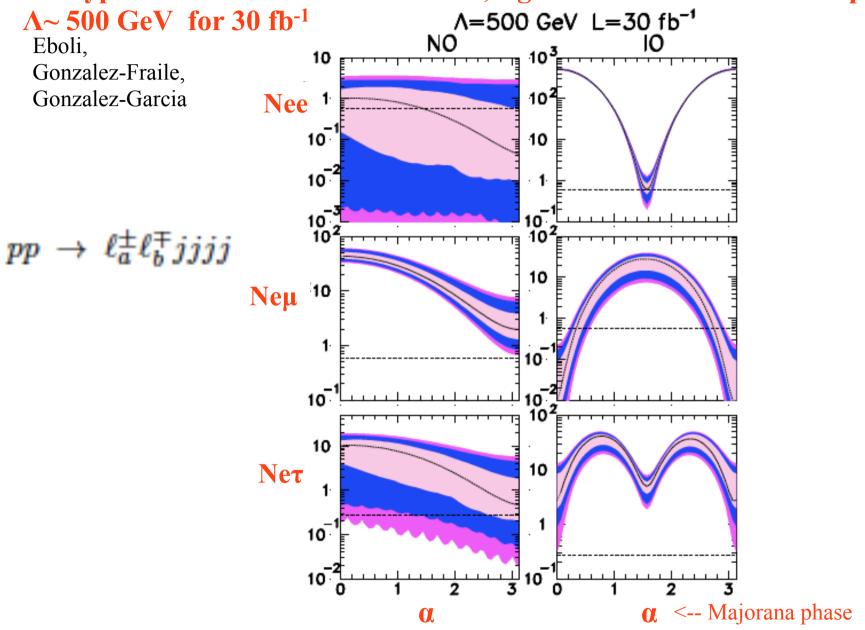
i.e.
$$Y_N^T \simeq y \left(\begin{array}{c} e^{i\delta}s_{13} + e^{-i\alpha}s_{12}r^{1/4} \\ s_{23}\left(1 - \frac{\sqrt{r}}{2}\right) + e^{-i\alpha}r^{1/4}c_{12}c_{23} \\ c_{23}\left(1 - \frac{\sqrt{r}}{2}\right) - e^{-i\alpha}r^{1/4}c_{12}s_{23} \end{array}\right) \qquad r = \frac{|\Delta m_{12}^2|}{|\Delta m_{13}^2|}$$
 Normal hierarchy

- * e- μ , μ - τ etc. oscillations and rare decays studied: Gavela, Hambye, Hernandez² 09;
- * Alonso + Li, 2010: possible suppression of μ -e transitions ->important impact of ν_{μ} ν_{τ} at a near detectors



We find that there are regions where an experiment as MINSIS would improve the present bounds on our Model

For type III version of our 2 N model, signals observable at LHC up to



Some good ideas:

"Partial compositeness":

D.B. Kaplan-Georgi in the 80s proposed a composite Higgs:

* Higgs light because the whole Higgs doublet is multiplet of goldstone bosons

They explored $SU(5) \rightarrow SO(5)$.

Explicit breaking of SU(2)xU(1) symmetry via external gauged U(1) (Kaplan, Georgi, Dimopoulos, Banks, Dugan, Galison)

Nowadays SO(5)--> SO(4) and explicit breaking via SM weak interaction (Contino, Nomura, Pomarol; Agashe, Contino, Pomarol; Giudice, Pomarol, Ratazzi, Grojean; Contino, Grojean, Moretti; Azatov, Galloway, Contino...)

 $SO(6) \longrightarrow SO(5)$ to get also DM (Frigerio, Pomarol, Riva, Urbano)

Anarchy: alive with not so small θ_{13} and not θ_{23} not maximal

no symmetry in the lepton sector, just random numbers

- Does not relate mixing to spectrum
- Does not address both quarks and leptons

(Hall, Murayama, Weiner; Haba, Murayama; De Gouvea, Murayama... Going towards hierarchy: Altarelli, Feruglio, Masina, Merlo)

*3 families with $O(2)_{NR}$:

- 3 light + 2 heavy N degenerate: bad θ_{12} quadrant. It cannot accomodate data!
- 3 light + 3 heavy N : OK for θ_{23} maximal and spectrum experimentally $\sin 2\theta_{23} = 0.41$ +-0.03 or 0.59+-0.02 Gonzalez-Garcia, Maltoni, Salvado, Schwetz Sept. 2012

*What about the other angles?

$$\left(\begin{array}{c} (\mathbf{O(2)}) \\ 0 \\ 0 \end{array} \right)_{3x3}$$

*3 families with $O(2)_{NR}$:

- 3 light + 2 heavy N degenerate: bad θ_{12} quadrant. It cannot accomodate data!
- 3 light + 3 heavy N : OK for θ_{23} maximal and spectrum

Moriond this morning, T2K best fit point $\sin^2 2\theta_{23}=1.00_{-0.068}$ 90%CL $->45^{\circ}$!

*What about the other angles?

BSM electroweak

* HIERARCHY PROBLEM

Fine-tuning issue: if BSM physics, why Higgs so light

Interesting mechanisms to solve it: SUSY, strong-int. light Higgs, extra-dim....

In practice, none without further fine-tunings

BSM electroweak

* HIERARCHY PROBLEM

Fine-tuning issue: if BSM physics, why Higgs so light

Interesting mechanisms to solve it: SUSY, strong-int. light Higgs, extra-dim....

In practice, none without further fine-tunings

* FLAVOUR PUZZLE: ~no theoretical progress

New B physics data AND neutrino masses and mixings

Understanding of the underlying physics stalled since 30 years. BSM theories tend to make it worse.

BSM electroweak

* HIERARCHY PROBLEM

Fine-tuning issue: if BSM physics, why Higgs so light

Interesting mechanisms to solve it: SUSY, strong-int. light Higgs, extra-dim....

In practice, none without further fine-tunings

* FLAVOUR PUZZLE : no progress

New B physics data AND neutrino masses and mixings

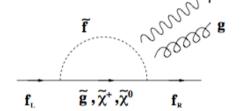
Understanding of the underlying physics stalled since 30 years. BSM theories tend to make it worse.

$$\Lambda_{\rm f} \sim 100$$
's TeV ???

The FLAVOUR WALL for BSM

i) Typically, BSMs have electric dipole moments at one loop

i.e susy MSSM:



< 1 loop in SM ---> Best (precision) window of new physics

ii) FCNC

i.e susy MSSM:

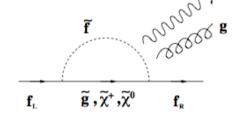
$$K^0 - \overline{K}^0 \text{ mixing } \underbrace{\tilde{s}}_{\tilde{d}_R} \underbrace{\tilde{s}_R^* \times \tilde{d}_R^*}_{\tilde{d}_R} \underbrace{\tilde{d}}_{\tilde{s}} \underbrace{\tilde{d}}_{\tilde{s}} \underbrace{\mu \to e \gamma}_{\underline{\tilde{\nu}_{\mu}} \times \tilde{\nu}_{\underline{e}}} \underbrace{\tilde{\nu}_{\mu}}_{\underline{\tilde{\nu}_{\mu}} \times \tilde{\nu}_{\underline{e}}} \underbrace{\tilde{v}_{\mu}}_{\underline{e}} \underbrace{\tilde{v}_{\mu}}_{\underline{e}}$$

competing with SM at one-loop

The FLAVOUR WALL for BSM

i) Typically, BSMs have electric dipole moments at one loop

i.e susy MSSM:



< 1 loop in SM ---> Best (precision) window of new physics

ii) FCNC

i.e susy MSSM:

$$K^{0}-\overline{K}^{0} \, \text{mixing} \quad \underbrace{\tilde{s}}_{\tilde{s}_{R}^{*} \times \tilde{d}_{R}^{*}}^{\tilde{s}_{R}^{*} \times \tilde{d}_{R}^{*}} \underbrace{\tilde{d}}_{\tilde{s}}^{*} \qquad \mu \to e \, \, \text{conversion (MEG, μ2e...)}$$

competing with SM at one-loop

What happens if we add

non-renormalizable terms to the potential?

In fact one should consider as many invariants as physical variables

seesaw I with Just TWO heavy neutrinos

$$\mathcal{L}_{\mathcal{M}_{\nu}} = (\bar{\ell}_{L}, \bar{N}^{c}, \bar{N}'^{c}) \begin{pmatrix} 0 & vY & vY' \\ vY^{T} & 0 & \mathbf{M} \\ vY'^{T} & \mathbf{M} & 0 \end{pmatrix} \begin{pmatrix} \ell_{L}^{c} \\ N \\ N' \end{pmatrix}$$

Lepton number scale and flavour scale distinct

Raidal, Strumia, Turszynski Gavela, Hambye, Hernandez²

Just TWO heavy neutrinos

$$\mathcal{L}_{\mathcal{M}_{
u}} = (\bar{\ell}_L \,,\, \bar{N}^c \,,\, \bar{N}'^c) \left(egin{array}{ccc} 0 & vY & vY' \ vY^T & 0 & \mathbf{M} \ vY'^T & \mathbf{M} & 0 \end{array}
ight) \left(egin{array}{c} \ell_L^c \ N \ N' \end{array}
ight)$$

$$m_{v} = \frac{\mathbf{Y} \quad \mathbf{v}^{2} \mathbf{Y'}^{T}}{\mathbf{M}} \qquad \qquad \mathbf{U}_{IN} \sim \frac{\mathbf{Y}}{\mathbf{M}}$$

--> Lepton number conserved conserved if either Y or Y' vanish:

Raidal, Strumia, Turszynski Gavela, Hambye, Hernandez²

Just TWO heavy neutrinos

$$\mathcal{L}_{\mathcal{M}_{
u}} = (\bar{\ell}_L \,,\, \bar{N}^c \,,\, \bar{N}'^c) \left(egin{array}{ccc} 0 & vY & vY' \ vY^T & 0 & \mathbf{M} \ vY'^T & \mathbf{M} & 0 \end{array}
ight) \left(egin{array}{c} \ell_L^c \ N \ N' \end{array}
ight)$$

--> One massless neutrino and only one Majorana phase α

the Yukawas are determined up to their overal magnitude

N.H.
$$Y = \frac{y}{\sqrt{m_{\nu_2} + m_{\nu_3}}} U_{PMNS} \begin{pmatrix} 0 \\ -i\sqrt{m_{\nu_2}} e^{-i\alpha} \\ \sqrt{m_{\nu_3}} e^{i\alpha} \end{pmatrix}$$

Gavela, Hambye, Hernandez² Raidal, Strumia, Turszynski

Comparing the scales reached by

Neutrino Oscillations vs µ-e experiments vs LHC

e.g. in Seesaw type I scales (heavy singlet fermions)

* v-oscillations: $10^{-3} eV - M_{GUT} \sim 10^{15} GeV$, because interferometry

* μ-e conversion: 2MeV - 6000 GeV

* **LHC:** ~ # TeV

The flavour symmetry is $G_f = U(3)_{\ell_L} \times U(3)_{E_R} \times O(2)_N$

adds a new invariant for the lepton sector, in total:

Tr (
$$y_{E} \ y_{E^{+}}$$
) Tr ($y_{E} \ y_{E^{+}}$)²

Tr ($y_{V} \ y_{V^{+}}$) Tr ($y_{V} \ y_{V^{+}}$)²

Tr ($y_{E} \ y_{E^{+}} \ y_{V} \ y_{V^{+}}$) — mixing

Tr ($y_{V} \ y_{V} \ \sigma_{2} \ y_{V^{+}}$) 2 <-- O(2)_N

O(2)_N is simply associated to Lepton Number

Leptons

Just TWO heavy neutrinos

$$\mathcal{L}_{\mathcal{M}_{\nu}} = (\bar{\ell}_{L}, \bar{N}^{c}, \bar{N}'^{c}) \begin{pmatrix} 0 & vY & vY' \\ vY^{T} & 0 & \mathbf{M} \\ vY'^{T} & \mathbf{M} & 0 \end{pmatrix} \begin{pmatrix} \ell_{L}^{c} \\ N \\ N' \end{pmatrix}$$

the Yukawas are determined up to their overal magnitude

N.H.
$$Y = \frac{y}{\sqrt{m_{\nu_2} + m_{\nu_3}}} U_{PMNS} \begin{pmatrix} 0 \\ -i\sqrt{m_{\nu_2}} e^{-i\alpha} \\ \sqrt{m_{\nu_3}} e^{i\alpha} \end{pmatrix}$$

Leptons

Just TWO heavy neutrinos

$$\mathcal{L}_{\mathcal{M}_{
u}} = (\bar{\ell}_L \,,\, \bar{N}^c \,,\, \bar{N}'^c) \left(egin{array}{ccc} 0 & vY & vY' \ vY^T & 0 & \mathbf{M} \ vY'^T & \mathbf{M} & 0 \end{array}
ight) \left(egin{array}{c} \ell_L^c \ N \ N' \end{array}
ight)$$

the Yukawas are determined up to their overal magnitude

N.H.
$$Y = \frac{y}{\sqrt{m_{\nu_2} + m_{\nu_3}}} U_{PMNS} \begin{pmatrix} 0 \\ -i\sqrt{m_{\nu_2}} e^{-i\alpha} \\ \sqrt{m_{\nu_3}} e^{i\alpha} \end{pmatrix}$$

The flavour symmetry is $G_f = U(3)_{\ell_L} \times U(3)_{E_R} \times O(2)_N$

Just TWO heavy neutrinos

$$\mathcal{L}_{\mathcal{M}_{\nu}} = (\bar{\ell}_{L}, \bar{N}^{c}, \bar{N}'^{c}) \begin{pmatrix} 0 & vY & vY' \\ vY^{T} & 0 & \mathbf{M} \\ vY'^{T} & \mathbf{M} & 0 \end{pmatrix} \begin{pmatrix} \ell_{L}^{c} \\ N \\ N' \end{pmatrix}$$

the Yukawas are determined up to their overal magnitude

N.H.
$$Y = \frac{y}{\sqrt{m_{\nu_2} + m_{\nu_3}}} U_{PMNS} \begin{pmatrix} 0 \\ -i\sqrt{m_{\nu_2}} e^{-i\alpha} \\ \sqrt{m_{\nu_3}} e^{i\alpha} \end{pmatrix}$$

The flavour symmetry is
$$G_f = U(3)_{\ell_L} \times U(3)_{E_R} \times O(2)_N$$

Jacobian Analysis: Mixing

What is the symmetry in this boundary?

$$Y_{\nu} = \begin{pmatrix} y_1 & 0 & 0 \\ 0 & \frac{y_2}{\sqrt{2}} & -i\frac{y_2}{\sqrt{2}} \\ 0 & \frac{y_3}{\sqrt{2}} & i\frac{y_3}{\sqrt{2}} \end{pmatrix} \qquad \lambda_3' Y_{\nu} - Y_{\nu} \lambda_7 = 0; \ \lambda_3' = \operatorname{diag}(0, 1, -1) \ ,$$

 $U(1)_{diag}$

related to the O(2) substructure

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{-i\omega} & 0 \\ 0 & 0 & e^{i\omega} \end{pmatrix} \mathcal{Y}_{\nu} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \omega & \sin \omega \\ 0 & -\sin \omega & \cos \omega \end{pmatrix}$$

[Alonso, Gavela, D. Hernández, L. Merlo; [Alonso, Gavela, D. Hernández, L. Merlo, S. Rigolin]

In many BSM the Yukawas do not come from dynamical fields:

D.B. Kaplan-Georgi in the 80's proposed a light SM scalar because being a (quasi) goldstone boson: *composite Higgs*

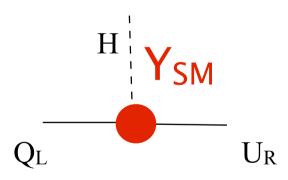
(D.B. Kaplan, Georgi, Dimopoulos, Banks, Dugan, Galison......Contino, Nomura, Pomarol; Agashe, Contino, Pomarol; Giudice, Pomarol, Ratazzi, Grojean; Contino, Grojean, Moretti; Azatov, Galloway, Contino... Frigerio, Pomarol, Riva, Urbano...)

D.B. Kaplan-Georgi in the 80's proposed a light SM scalar because being a (quasi) goldstone boson: *composite Higgs*

Flavour "Partial compositeness" D.B Kaplan 91:

A sort of "seesaw for quarks"

(nowadays sometimes justified from extra-dim physics)



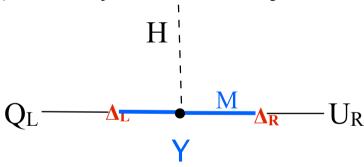
$$m_q = v Y_{SM}$$

D.B. Kaplan-Georgi in the 80's proposed a Higgs light because being a (quasi) goldstone boson: *composite Higgs*

"Partial compositeness":

A sort of "seesaw for quarks"

(nowadays sometimes justified from extra-dim physics)



$$Y_{SM} = Y_{\Delta_L} \Delta_R / M^2$$

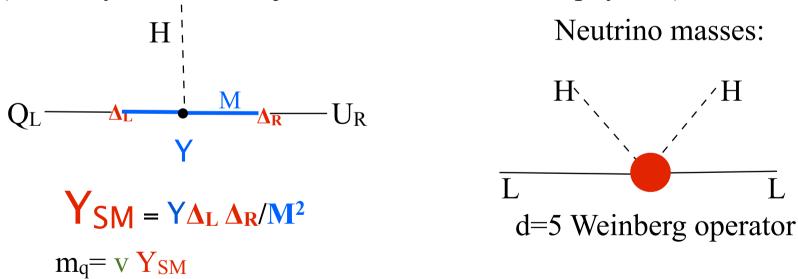
$$m_q = v Y_{SM}$$

D.B. Kaplan-Georgi in the 80's proposed a Higgs light because being a (quasi) goldstone boson: *composite Higgs*

"Partial compositeness":

A sort of "seesaw for quarks"

(nowadays sometimes justified from extra-dim physics)

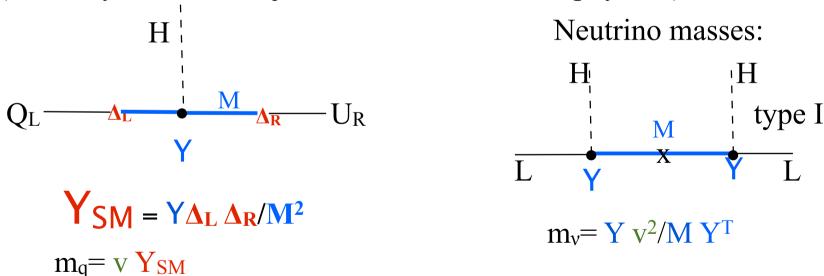


D.B. Kaplan-Georgi in the 80's proposed a Higgs light because being a (quasi) goldstone boson: *composite Higgs*

"Partial compositeness":

A sort of "seesaw for quarks"

(nowadays sometimes justified from extra-dim physics)

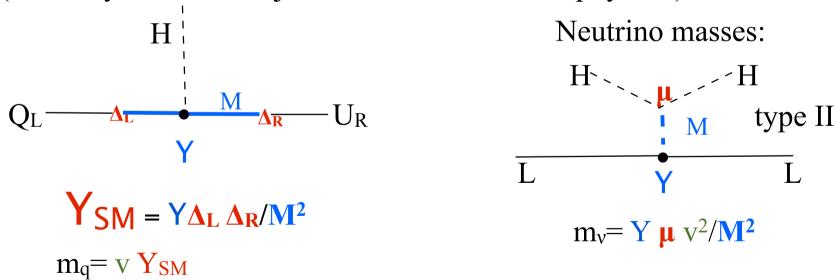


D.B. Kaplan-Georgi in the 80's proposed a Higgs light because being a (quasi) goldstone boson: *composite Higgs*

"Partial compositeness":

A sort of "seesaw for quarks"

(nowadays sometimes justified from extra-dim physics)



For instance, in discrete symmetry ideas:

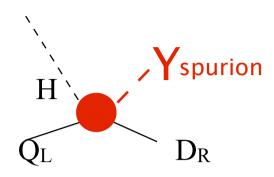
The Yukawas are indeed explained in terms of dynamical fields. And they do not need to worry about goldstone bosons.

In spite of θ_{13} not very small, there is activity. For instance, combine generalized CP (Bernabeu, Branco, Gronau 80s) with discrete Z_2 groups in the neutrino sector: maximal θ_{23} , strong constraints on values of CP phases (Feruglio, Hagedorn and Ziegler 2013; Holthausen, Lindner and Schmidt 2013)

They were popular mainly because they can lead easily to large mixings (tribimaximal, bimaximal...)

But:

- Discrete approaches do not relate mixing to spectrum
- Difficulties to consider both quarks and leptons



Minimal Flavour Violation:

- Use the flavour symmetry of the SM in the limit of massless fermions (Chivukula+ Georgi)

quarks: $G_{flavour} = U(3)_{QL} \times U(3)_{UR} \times U(3)_{DR}$

Hybrid dynamical-non-dynamical Yukawas:

 $\begin{array}{c} U(2) \text{ (Pomarol, Tomasini; Barbieri, Dvali, Hall, Romanino...)}....\\ U(2)^3 \text{ (Craig, Green, Katz; Barbieri, Isidori, Jones-Peres, Lodone, Straub..} \\ & ... \text{Sala)} \\ & & 0 & 0 & 1 \\ \end{array}$

Sequential ideas (Feldman, Jung, Mannel; Berezhiani+Nesti; Ferretti et al., Calibbi et al. ...)

For this talk:

each Y_{SM} -- >one single field Y

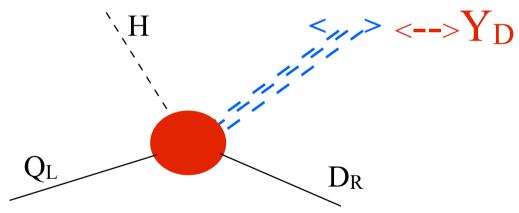
$$Y_{SM} \sim \frac{\langle y \rangle}{\Lambda_{fl}}$$

Can it shed light on why quark and neutrino mixings are so different?

Alonso, B.G., D. Hernandez, L. Merlo, Rigolin

Assume that the Yukawa couplings correspond to dynamical fields at high energies

$$Y_{SM} \sim < \phi > \text{ or } Y_{SM} \sim 1/< \phi > \text{ or } \dots < (\phi \chi)^n >$$



[Cabibbo,
Michel,+Radicati, Cabibbo+Maiani ...
C. D. Froggat, H. B. Nielsen
Anslem+Berezhiani, Berezhiani+Rossi]
(Alonso+Gavela+Merlo+Rigolin 11) ...

For this talk:

each Y_{SM} -- >one single field y

$$Y_{SM} \sim \frac{\langle y \rangle}{\Lambda_f}$$

transforming under the SM flavour group

Anselm+Berezhiani 96; Berezhiani+Rossi 01... Alonso+Gavela+Merlo+Rigolin 11...

Generalization to any seesaw model

the effective Weinberg Operator

$$ar{\ell}_L ilde{H} rac{Y_
u Y_
u^T}{M} ilde{H}^T \ell_L^c$$

shall have a flavour structure that breaks $U(3)_L$ to O(3)

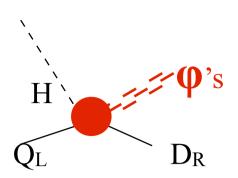
$$\frac{Y_{\nu} v^{2} Y_{\nu}^{T}}{M} = \frac{y_{\nu} v^{2}}{M} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

then the results apply to any seesaw model

This did not need any ad-hoc discrete symmetries, but simply using the in-built continuous flavour symmetry of the SM + seesaw, $U(3)^5 \times O(3)$

Also, note that often people working with "flavons" invents a "texture" that goes well with data, and then tries to design a potential that leads to it. In our case, the inevitable potential minima encompass the different patterns of quarks and leptons.

Some good ideas, based on continuous symmetries:



Frogatt-Nielsen '79: U(1)_{flavour} symmetry

- Yukawa couplings are effective couplings,
- Fermions have U(1)_{flavour} charges

$$\left(\begin{array}{c} \Phi \end{array}\right)^n Q H q_R \qquad , \quad \mathbf{Y} \sim \left(\begin{array}{c} \Phi \end{array}\right)^n$$

e.g. n=0 for the top, n large for light quarks, etc.

--> **FCNC** ?

M~1 TeV is suggested by electroweak hierarchy problem

$$\delta m_H^2 = -rac{Y_N^\dagger Y_N}{16\pi^2} \left[2\Lambda^2 + 2M_N^2 \log rac{M_N^2}{\Lambda^2}
ight]$$
(Vissani, Casas et al., Schmaltz)

$$\begin{array}{c} \Delta \\ \end{array}$$

$$\delta m_H^2 = -3rac{\lambda_3}{16\pi^2}\left[\Lambda^2 + M_\Delta^2\left(\lograc{M_\Delta^2}{\Lambda^2} - 1
ight)
ight] \ -rac{\mu_\Delta^2}{2\pi^2}\log\left(\left|rac{M_\Delta^2 - \Lambda^2}{M_\Delta^2}
ight|
ight)$$

(Abada, Biggio, Bonnet, Hambye, M.B.G.)

$$\delta m_H{}^2 = -3 \frac{Y_\Sigma^\dagger Y_\Sigma}{16\pi^2} \left[2\Lambda^2 + 2M_\Sigma^2 \log \frac{M_\Sigma^2}{\Lambda^2} \right]$$

In some BSM theories, Yukawas do correspond to dynamical fields:

- for instance in discrete symmetry scenarios
- also with continuous symmetries

For this talk:

each Y_{SM} -- >one single field y

$$Y_{SM} \sim \frac{\langle y \rangle}{\Lambda_f}$$

quarks:

Before the electroweak model, for masses: Cabibbo + Louis Michel and Radicati, Cabibbo and Maiani!!!

 $G_{flavour} = SU(3)_{QL} \times SU(3)_{UR} \times SU(3)_{DR} \dots$