Searches for BSM Higgs bosons in CMS at LHC

I. Marfin

on behalf of the CMS Collaboration

Outline

イロト イロト イヨト イ

LHC and CMS performance

LHC and CMS performance

The LHC has been performing extremely well

- CMS operation efficiency ~95%
- Recorded luminosity in pp collisions of ~ 25 fb⁻¹ by the end of 2012

CMS Integrated Luminosity, pp, 2012, $\sqrt{s} = 8$ TeV

CMS Integrated Luminosity, pp, 2011, $\sqrt{s} = 7$ TeV

CMS Detector Overview

- Presented analyses extensively use in particular tracker, calorimeter and muon systems
- Application of Particle-Flow techniques for efficient reconstruction of all particles in a event

I. Marfin (DESY)

Particle-Flow Event Reconstruction in CMS

- Reconstruct all particles in detector volume
 - combining information from sub-detectors
- First, identification of leptons and photons
 - then the rest to cluster in jets

Observation of a New Boson

イロト イロト イヨト イ

Observation of a New Boson

- Discovery of a new Boson has been announced by ATLAS and CMS
- Latest mass measurement $m_X = 125.7 \pm 0.3(stat.) \pm 0.3(syst.)$ GeV
- Consistent with a Higgs boson.
 - But which Higgs boson have we observed?

•

SM? or ... MSSM lightest h?

A D > A B > A

Physics Beyond the SM

イロト イポト イヨト イヨト

Physics Beyond the SM

New Physics expected at TeV scale

- "Fine tuning" problem: $\Delta m_{H}^{2} \propto \Lambda_{UV}^{2} \sim M_{Planck}^{2}$
- Hierarchy problem: $M_{W/Z}/M_{Plank(GUT)} \sim 10^{-16}$
- Dark Matter; Dark Energy
- Unifcation of gauge couplings
- SUSY as possible solution...

The MSSM Higgs Sector

- Two scalar Higgs doublets, H_u and H_d
- 5 physical scalars
 - 3 neutral
 - $\Phi = h, H(CP even)/A(CP odd)$
 - 2 charged (H[±])
- Determined by two parameters at tree level

•
$$tan\beta = /$$

- ► M_A
- h boson
 - behavior as the SM Higgs boson
- Decay channels of Φ
 - $\Phi \rightarrow b\bar{b}, Br(b\bar{b}) \sim 90\%$
 - $\Phi \rightarrow \tau \overline{\tau}, Br(\tau \overline{\tau}) \sim 10\%$
 - $\Phi \rightarrow \mu \mu$, $Br(\mu \mu) \sim 0.03\%$

Non-SM Higgs at CMS

- $\Phi \rightarrow \tau \tau$: 4.9 fb⁻¹ at 7 TeV + 12.1 fb⁻¹ at 8 TeV
- $\Phi \rightarrow b\overline{b}$: 4.0-4.8 fb⁻¹ at 7 TeV
- $\Phi \rightarrow \mu \mu$: 4.9 fb⁻¹ at 7 TeV
- $H^{\pm} \rightarrow \tau v$: 2.3-4.9 fb⁻¹ at 7 TeV

MSSM $\Phi \rightarrow \tau \tau$

13/39

- 32

イロト 人間 とくほ とくほ とう

τ and $Di - \tau$ reconstructions Identification of $\tau \rightarrow$

 $Di - \tau$ system \rightarrow

- *M*_{ττ} with maximum likelihood method
- 4-vectors of visible leptons, *E_T* as input
- 15-20% resolution of $M_{\tau\tau}$

• τ - reconstruction efficiency ~ 70%

$\Phi \rightarrow \tau \tau$ triggering and event selection

(CMS-HIG-12-050)

- **Trigger** : selection based on e/μ and τ objects
 - four channels: $e + \tau_h$, $\mu + \tau_h$, $e + \mu$, $\mu + \mu$

Event selection

- lepton selection: p_T > 20 GeV; $|\eta|$ < 2.1; isolated
- $\not E_T > 25 \text{ GeV}; M_T < 40 \text{ GeV}$ (to supp. W+jet, $t\bar{t}$)
- 2 categories to increase the sensitivity of the analysis:
 - **b-tag** (sensitive for $gg \rightarrow bb\Phi$)
 - \leq 1 jet of p_T > 30 GeV
 - \geq 1 b-tagged jet of $p_T > 20 \text{ GeV}$

non b-tag (sensitive for $gg \rightarrow \Phi$) ≤ 1 jet of $p_T > 30$ GeV

 \geq 1 no b-tagged jet of p_T > 20 GeV

・ロト ・ ア・ ・ ア・ ・ ア・ ア

- Signal extraction: by the shape analysis of M_{ττ}
- \rightarrow **binned maximum likelihood fit** to reconstruced $\tau\tau$ invariant mass spectrum

$\Phi \rightarrow \tau \tau$ background estimation

3

イロン 不良 とくほど 不良 とう

$\Phi \rightarrow \tau \tau$ results in the b-tag category

- Templates fitting
 S+B hypothesis.
- Shaded bands: uncert's after fit.

I. Marfin (DESY)

$\Phi \rightarrow \tau \tau$ exclusion limits

X

- Signal cross section and uncertainties from LHC Higgs Cross Section Group
- No excess over predicted SM background in any event categroy
- Rules out a significant part of the parameter space previously unexplored: tan β reaching as low as 5 for M_A < 250 GeV in m_h^{max} scenario

MSSM $\Phi \rightarrow b\bar{b}$

3

イロト 人間 とくほ とくほ とう

$\Phi \rightarrow b\bar{b}$ triggering and event selection

(CMS-HIG-12-033)

- Two event categories considered: **all-hadronic** (3 b-jets) and **semi-leptonic** (2 b-jets with an non-isolated muon)
 - challenging triggers at the LHC
 - almost independent samples (2-3% overlap)

all-hadronic

Trigger

2 or 3 jets, \geq 2 b-tagged

Jet selection

 \geq 3 high- p_T jets in $|\eta| <$ 2.2 3 leading offline 'tight' b-tags $\Delta R_{12} > 1$ semi-leptonic

1 muon + 2 jets, \geq 1 b-tagged

- \geq 3 high- p_T jets in $|\eta| <$ 2.6 2 'tight' b-tags, 1 loose b-tag $\Delta R_{ij} >$ 1
- 1 muon with $p_T > 15$ GeV in a jet

Signal extraction

• as a peak in the di-jet mass distribution M_{12} in triple-btag sample

$\Phi \rightarrow b \bar{b}$ data-driven estimation of background

- Background:
 - QCD multi-jets events with 3 b-jets (2 b-jets + 1 misidentifed c- or udsg-jet)
 - Other backgrounds such as tt or Z+jets found to be small
 - 2-b-tagged data samples to be utilized

all-hadronic

- 2-b-tagged data; ≥ 3 jets (sorted in *p*_T)
- **b,c,udsg** flavour assumptions to untagged jet **X**: **bbX**, **bXb**, **Xbb**
- **2D templates** on *M*₁₂ and *X*₁₂₃ (predicts flavor content)
- 5 templates

semi-leptonic

• Probability of 3rd b-tagged jet:

• $P_b = \varepsilon_b \cdot f_b + \varepsilon_c \cdot f_c + \varepsilon_q \cdot f_q$

- *ɛ* taken from MC (sclaled by data/MC)
- *f* data-driven estimated via a template fit

ヘロン 人間 とくほ とくほう

$\Phi \rightarrow b\bar{b}$ results in the all-hadronic category

- No significant deviation from background
- Background mainly (~ 70%) composed of three b jets

- Shown $M_{\Phi} = 200 \text{GeV}$:
 - Good fit quality
 - Largest upward fluctuation of $\sim 1.4\sigma$
 - No signal observed at any mass from [90-350] GeV

$\Phi \rightarrow b\bar{b}$ results in the semileptonic category

- Two independent data-driven estimations of background agree well
- No indication of signal excess

イロト イポト イヨト イヨト

$\Phi \rightarrow b\bar{b}$ combined results

- Stringent limits (model-independent) on the cross section for $\Phi \rightarrow b\bar{b}$
- World's best sensitivity in MSSM searches in the $b\bar{b}$ channel

$\mathsf{MSSM}\;\Phi\to\mu^+\mu^-$

25 / 39

3

$\Phi \rightarrow \mu^+ \mu^-$ triggering and event selection

(CMS-HIG-12-011)

- Excellent mass resolution and manageable backgrounds, but low BR
- Signature: two oppositely charged, isolated muons with $p_{T1(2)} > 30(20)$ GeV, $|\eta| < 2.1$ and $\not E_T < 30$ GeV
- Category 1 $(gg \rightarrow b\bar{b}\Phi)$
 - ▶ ≥ 1 b-tagged jet: p_T > 20 GeV, $|\eta|$ < 2.4, $\Delta R(\mu, j)$ > 0.5
- Category 2 $(gg \rightarrow b\bar{b}\Phi)$
 - ▶ veto on b-tagged jets, but a $3^{rd}\mu$: $p_T > 3$ GeV, $|\eta| < 2.4$, $\Delta R(\mu, \mu) > 0.5$
- Category 3 $(gg \rightarrow \Phi)$
 - ▶ all events ∉ Categories 1,2
- Backgroundfrom data: mostly Drell-Yan (Zbb), *tt*, W⁺W⁻, MC Breit-Wigner on M²_{μμ} around Z-peak
- Signal extraction: a unbinned maximum likelihood fit of 3 signal M_{μμ} + background Breit-Wigners hypotheses to data

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$\Phi \rightarrow \mu^+ \mu^-$ combined result from 3 categories

No excess seen over predicted SM background in the combination

• 95 % CL upper limit on $\sigma \times Br(\mu\mu) < 40-20$ fb for $M_A = 150-300$ GeV

MSSM $t \rightarrow bH^{\pm}, H^{\pm} \rightarrow \tau v$

28 / 39

イロト イポト イヨト イヨト 一日

MSSM H[±] production and decays

(CMS-HIG-12-019, CMS-HIG-12-052)

- Charged Higgs of low masses, $m_{H^{\pm}} < m_{top} - m_b$
 - in $t\bar{t}$ decays $t\bar{t} \rightarrow H^{\pm}W^{\mp}b\bar{b}$
- at large $\tan \beta > 5$
 - $Br(H^{\pm} \rightarrow \tau^{\pm} v) \simeq 1$
- channels to study:
 - $e + \tau$, $e + \mu$, $\tau + jets$ (2.0-2.3 fb⁻¹)
 - $\mu + \tau (4.9 \text{ fb}^{-1})$

tau + jets

I. Marfin (DESY)

Search for the BSM Higgs boson at CMS

Light *H*[±] : Results

- Signal extraction:
 - $\tau + jets$: fit of M_T for $\tau, \not \in_T$ pair
 - $\mu + \tau$: fit of $R = p_T^{lead.track} / E_{\tau}$
 - Other channels: event counting
- No signal observed

Light H^{\pm} : Exclusion limits of the combination

• Significant constraint on $Br(t \rightarrow H^+ b) < 3 - 2\%$

Summary

- There is no evidence of a BSM Higgs boson.
- Limits in the MSSM parameters have been set by the CMS
 - $\Phi \rightarrow \tau \tau$: **the most stringent** limits on the MSSM (tan β , M_A) parameter space
 - $\Phi \rightarrow b\bar{b}$: First time at LHC! World's best limit in this channel
 - $\Phi \rightarrow \mu \mu$: best mass resolution; high sensitivity even with low BR
 - Light H^{\pm} : **new stringent** exclusion limits in the $BR \times \sigma$

MORE 8 TeV searches are being updated and developed

Stay tuned!

・ロト ・ 同ト ・ ヨト ・ ヨト

"You want proof? I'll give you proof!"

A D > A B > A

Backup slides

MSSM m_h^{max} scenario

• $M_{SUSY} = 1 \text{ TeV}, X_{t(b)} = 2M_{SUSY}, \mu = \pm 200 \text{ GeV}, M_{\tilde{g}} = 800 \text{ GeV}, M_2 = 200 \text{ GeV}, M_3 = 800 \text{ GeV}$

・ロン ・雪 と ・ ヨ と ・ ヨ と …

b-jet identification

- b-tagging:
 - Combined Secondary Vertex (CSV) algorithm -- reconstruction of secondary vertices together with track-based lifetime in a jet for a maximum likelihood
 - ▶ 3-D impact parameter (IP) of tracks; IP significance (IP/σ) of 2^{nd} or 3^{rd} jet used as b-tagging discriminator
 - CMS-PAS-BTV-11-004

$\tau-$ id with the "Hadron Plus Strips" algorithm

• HPS : π^0 's candidates are formed from any PF-photon or PF-electron found inside "strips" which account for possible broadening of the calorimeter signature by photon conversions. The mass of the composite system must be compatible with a ρ or a₁ hypothesis.

MSSM implication of 126 GeV Resonance

- some MSSM scenarios are compatible with M_h = 126 GeV
 - in decoupling regime with $M_A, M_H, M_{H^{\pm}} > 150 \text{ GeV}$
 - possible m_h^{max} interpretation
- Heinemeyer et al., arXiv:1112.3026, Arbey et al., arXiv:1207.1348
- $\Phi \rightarrow \tau \tau$ excludes $M_h = 126$ at $M_A < 200$ GeV

$\Phi \rightarrow \tau \tau$ results in the non-b-tag category

$\Phi \rightarrow b \bar{b}$ data-driven estimation of background

- Background:
 - QCD multi-jets events with 3 b-jets and 2 b-jets + 1 misidentifed c or udsg-flavour jet
 - Other backgrounds such as tt or Z+jets found to be small
 - 2-b-tagged data samples to be utilized

all-hadronic

semi-leptonic

