Motivation 00	IDM oo	$h o \gamma \gamma$, $Z \gamma$ rates 0000	$egin{array}{l} R_{\gamma\gamma} > 1 \ m{oo} \end{array}$	$1>R_{\gamma\gamma}>0.7$ 000	

Higgs decays to $\gamma\gamma$ and $Z\gamma$ in the Inert Doublet Model

Bogumiła Świeżewska

Faculty of Physics, University of Warsaw

15.09.2013 Scalars 2013, Warsaw

in collaboration with M. Krawczyk, D. Sokołowska, P. Swaczyna, Phys. Rev. D 88, 035019 (2013), JHEP 09 (2013) 055

Motivation 00	IDM oo	$h ightarrow \gamma \gamma$, $Z \gamma$ rates 0000	$egin{array}{c} {\cal R}_{\gamma\gamma}>1\ { m oo} \end{array}$	$1> R_{\gamma\gamma}>0.7$ 000	
Outline					

- Motivation
- Introduction to IDM
- $h \rightarrow \gamma \gamma$, $Z \gamma$ rates and their correlation
- $R_{\gamma\gamma} > 1$
 - Bounds on masses
- $1 > R_{\gamma\gamma} > 0.7 \rightarrow$ see the talk of D. Sokołowska
 - Implications for the DM
 - Combination with WMAP
- Summary

Motivation ●0	IDM oo	$h o \gamma \gamma$, $Z \gamma$ rates 0000	$egin{array}{c} {\cal R}_{\gamma\gamma}>1\ { m oo} \end{array}$	$1> R_{\gamma\gamma}>0.7$ 000	
Why $h \rightarrow$	» γγ?				

- Important Higgs decay channel at the LHC
- Experimental hints on deviation from the SM value

ATLAS :
$$R_{\gamma\gamma} = 1.65 \pm 0.24(\text{stat})^{+0.25}_{-0.18}(\text{syst})$$

CMS : $R_{\gamma\gamma} = 0.79^{+0.28}_{-0.26}$

- Sensitivity to new charged particles well suited for studying different 2HDMs
- Sensitivity to invisible decay channels information about extra states

 \rightarrow also $h \rightarrow Z\gamma$ interesting, but not enough data

Motivation	IDM	$h \rightarrow \gamma \gamma, \ Z \gamma$ rates	$R_{\gamma\gamma}>1$	$1>R_{\gamma\gamma}>0.7$	
00					

Why Inert Doublet Model?

- Rich phenomenology
- $\rho = 1$ at the tree-level
- Viable DM candidate
- Thermal evolution of the Universe + some conditions for baryogenesis

Motivation 00	IDM ●o	$h o \gamma \gamma$, $Z \gamma$ rates 0000	$egin{array}{c} m{R}_{\gamma\gamma} > m{1} \ m{00} \end{array}$	$1>R_{\gamma\gamma}>0.7$ 000	

Inert Doublet Model

[N. G. Deshpande, E. Ma, Phys. Rev. D 18 (1978) 2574, J. F. Gunion, H. E. Haber, G. Kane, S. Dawson, The Higgs Hunter's Guide, 1990 Addison-Wesley, R. Barbieri, L. J. Hall, V. S. Rychkov, Phys.Rev. D74 (2006) 015007, I. F. Ginzburg, K. A. Kanishev, M. Krawczyk, D. Sokołowska, Phys. Rev. D 82 (2010) 123533]

IDM – a 2HDM with the scalar potential (real parameters):

$$V = -\frac{1}{2} \left[m_{11}^2 (\phi_S^{\dagger} \phi_S) + m_{22}^2 (\phi_D^{\dagger} \phi_D) \right] + \frac{1}{2} \left[\lambda_1 (\phi_S^{\dagger} \phi_S)^2 + \lambda_2 (\phi_D^{\dagger} \phi_D)^2 \right] +$$

 $\left. +\lambda_3(\phi_S^{\dagger}\phi_S)(\phi_D^{\dagger}\phi_D) +\lambda_4(\phi_S^{\dagger}\phi_D)(\phi_D^{\dagger}\phi_S) + \frac{1}{2}\lambda_5\left[(\phi_S^{\dagger}\phi_D)^2 + (\phi_D^{\dagger}\phi_S)^2\right] \right]$

- **D** symmetry: $\phi_D \rightarrow -\phi_D, \phi_S \rightarrow \phi_S$
- Yukawa interactions: type I (only ϕ_S couples to fermions)
- \mathcal{L} D-symmetric
- **D**-symmetric vacuum state $\langle \phi_S \rangle = \frac{v}{\sqrt{2}}, \langle \phi_D \rangle = 0$

\Rightarrow EXACT D-symmetry

• Number of theoretical and experimental constraints

Motivation	IDM	$h ightarrow \gamma \gamma$, $Z \gamma$ rates	$R_{\gamma\gamma}>1$	$1>R_{\gamma\gamma}>0.7$	
	00				

Particle spectrum of IDM

[E. M. Dolle, S. Su, Phys. Rev. D 80 (2009) 055012, L. Lopez Honorez, E. Nezri, F. J. Oliver, M. Tytgat, JCAP 0702 (2007) 028, D. Sokołowska, arXiv:1107.1991 [hep-ph]]

- φ₅: h SM-like Higgs boson, tree-level couplings to fermions and gauge bosons like in the SM.
 Deviation from SM in loop couplings possible!
- ϕ_D : *H*, *A*, H^{\pm} dark scalars, no tree-level couplings to fermions
- *D* symmetry exact ⇒ lightest *D*-odd particle stable
 ⇒ DM candidate
- DM= H, so $M_H < M_{H^{\pm}}$, M_A
- Three regions of DM mass consistent with astrophysical observations (WMAP: $0.1018 < \Omega_{DM}h^2 < 0.1234$):
 - $M_H \lesssim 10 \, {
 m GeV}$
 - $40 \,{
 m GeV} < M_H < 150 \,{
 m GeV}$
 - $M_H \gtrsim 500 \,\mathrm{GeV}$

MotivationIDM $h \rightarrow \gamma \gamma$, $Z \gamma$ rates $R_{\gamma \gamma} > 1$ $1 > R_{\gamma \gamma}$ $\circ \circ$ $\circ \circ \circ$ $\circ \circ \circ$ $\circ \circ \circ$ $\circ \circ \circ$

 $1>R_{\gamma\gamma}>0.7$

Summary O

$\gamma\gamma$ and $Z\gamma$ decay rates of the Higgs boson

[Q.-H. Cao, E. Ma, G. Rajasekaran, Phys. Rev. D 76 (2007) 095011, P. Posch, Phys. Lett. B696 (2011) 447, A. Arhrib, R. Benbrik, N. Gaur, Phys. Rev. D85 (2012) 095021, BS, M. Krawczyk, Phys. Rev. D 88 (2013) 035019]

$$R_{\gamma\gamma} - 2\text{-photon decay rate, } R_{Z\gamma} - Z\gamma \text{ decay rate}$$

$$R_{\gamma\gamma} = \frac{\sigma(pp \to h \to \gamma\gamma)^{IDM}}{\sigma(pp \to h \to \gamma\gamma)^{SM}} \approx \frac{\Gamma(h \to \gamma\gamma)^{IDM}}{\Gamma(h \to \gamma\gamma)^{SM}} \frac{\Gamma(h)^{SM}}{\Gamma(h)^{IDM}}$$

$$R_{Z\gamma} - \text{treated analogously}$$

- Largest contribution from gg fusion
- $\sigma(gg \rightarrow h)^{SM} = \sigma(gg \rightarrow h)^{IDM}$ (not true in other 2HDMs)

Two sources of deviation from $R_{\gamma\gamma} = 1$:

- invisible decays $h \to HH$, $h \to AA$ in $\Gamma(h)^{IDM}$
- charged scalar loop in $\Gamma(h \to \gamma \gamma)^{IDM}$

Motivation 00	IDM oo	$h o \gamma \gamma, \ Z \gamma \text{ rates}$	${m R_{\gamma\gamma}}>1$ 00	$1> R_{\gamma\gamma}>0.7$ 000	
Invisible	decay	<i>l</i> S			

$$\begin{split} \Gamma(h) = &\Gamma(h \to b\overline{b}) + \Gamma(h \to WW^*) + \Gamma(h \to \tau^+\tau^-) + \Gamma(h \to gg) \\ &+ \Gamma(h \to ZZ^*) + \Gamma(h \to c\overline{c}) + \Gamma(h \to Z\gamma) + \Gamma(h \to \gamma\gamma) \\ &+ \Gamma(h \to HH) + \Gamma(h \to AA) \end{split}$$

- Controlled by: M_H , M_A , $\lambda_{345} \sim hHH$, $\lambda_{345} \sim hAA$
- Invisible decays, if kinematically allowed, dominate over SM channels.
- Plot for $M_A = 58$ GeV, $M_H = 50$ GeV

Motivation	IDM	$h \rightarrow \gamma \gamma$, $Z \gamma$ rates	$R_{\gamma\gamma}>1$	$1>R_{\gamma\gamma}>0.7$	
		0000			

Charged scalar H^{\pm} loop

[J. R. Ellis, M. K. Gaillard and D. V. Nanopoulos, Nucl. Phys. B 106 (1976) 292, M. A. Shifman, A. I. Vainshtein, M. B. Voloshin and V. I. Zakharov, Sov. J. Nucl. Phys. 30 (1979) 711 [Yad. Fiz. 30, 1368 (1979)]

$$\Gamma(h \to \gamma \gamma)^{IDM} = \frac{G_F \alpha^2 M_h^3}{128\sqrt{2}\pi^3} \left| \mathcal{A}^{SM} + \frac{2\mathsf{M}_{\mathsf{H}^{\pm}}^2 + \mathsf{m}_{22}^2}{2\mathsf{M}_{\mathsf{H}^{\pm}}^2} \mathsf{A}_0\left(\frac{4\mathsf{M}_{\mathsf{H}^{\pm}}^2}{\mathsf{M}_{\mathsf{h}}^2}\right) \right|^2$$

- Constructive or destructive interference between SM and H[±] contributions
- Controlled by $M_{H^{\pm}}$ and $2M_{H^{\pm}}^2 + m_{22}^2 \sim \lambda_3 \sim hH^+H^-$
- Invisible channels closed
 ⇒ H[±] contribution visible

Motivation 00	IDM oo	$h o \gamma \gamma, \ Z \gamma \text{ rates}$	${m R_{\gamma\gamma}}>1$ 00	$1> R_{\gamma\gamma}>0.7$ 000	
$h ightarrow \gamma \gamma$	vs h –	$\rightarrow Z\gamma$			

[BŚ, M. Krawczyk, Phys. Rev. D 88 (2013) 035019, formulas for h → Zγ: A. Djouadi, Phys.Rept. 459 (2008) 1, C.-S. Chen, C.-Q. Geng, D. Huang, L.-H. Tsai, Phys.Rev.D 87 (2013) 075019]

- Sensitivity to invisible channels
- $R_{\gamma\gamma}$ and $R_{Z\gamma}$ positively correlated
- $R_{\gamma\gamma} > 1 \Leftrightarrow R_{Z\gamma} > 1$

Motivation 00	IDM oo	$h o \gamma \gamma$, $Z \gamma$ rates 0000	$egin{array}{l} {m R}_{\gamma\gamma}>{f 1} \ {ulleto} {f 0} \end{array}$	${f 1>R_{\gamma\gamma}>0.7}_{ m OOO}$	
R vs	Dark N	latter (H) ma	SS		

[A. Arhrib, R. Benbrik, N. Gaur, Phys. Rev. D85 (2012) 095021, BŚ, M. Krawczyk, Phys. Rev. D 88 (2013) 035019]

- Invisible channels open ⇒
 no enhancement in
 h → γγ possible
- Enhanced $R_{\gamma\gamma}$ for $M_H, M_{H^{\pm}}, M_A > 62.5 \,\text{GeV}$
- $R_{\gamma\gamma} > 1 \Rightarrow$ very light DM excluded

Motivation 00	IDM oo	$h o \gamma \gamma$, $Z \gamma$ rates 0000	$egin{array}{c} {m R}_{\gamma\gamma} > {f 1} \ {oldsymbol \odot} egin{array}{c} {oldsymbol \odot} egin{array}{c} {m O} egin{array}{c} {m O} \end{array} \end{array}$	$1>R_{\gamma\gamma}>$ 0.7	

$R_{\gamma\gamma}$ vs charged scalar mass

- Enhanced $R_{\gamma\gamma}$ even for big values of $M_{H^{\pm}}$
- $\begin{array}{l} \mathsf{R}_{\gamma\gamma} > 1.2 \Rightarrow \\ \mathsf{M}_{\mathsf{H}^{\pm}} \text{, } \mathsf{M}_{\mathsf{H}} \lesssim 154 GeV \end{array}$
 - Only medium DM mass
 - Light charged scalar

$R_{\gamma\gamma}$ constraints on $\lambda_{345} \sim hHH$

[M. Krawczyk, D. Sokołowska, P. Swaczyna, BŚ, JHEP 09 (2013) 055]

- Setting a lower limit on $R_{\gamma\gamma}$ constrains λ_{345}
- Upper and lower limits on λ_{345} depend on M_H
- Stronger than limits on Br(*h* → inv) from LHC
- Stronger than limits from XENON100

Motivation 00	IDM oo	h → γγ, Zγ rates 0000	$R_{\gamma\gamma} > 1$ 00	$1> R_{\gamma\gamma}>0.7$ 0.7	
Invisible channel h –	→ <i>HH</i> open				

WMAP constraints on λ_{345}

 λ_{345} controls the annihilation of the DM HH $\rightarrow h \rightarrow f \overline{f} \Rightarrow$ important for the relic density of the DM

• $R_{\gamma\gamma} > 0.7$ inconsistent with WMAP for $M_H < 53$ GeV

• Light DM excluded!

Motivation 00	IDM oo	$h o \gamma \gamma$, $Z \gamma$ rates 0000	$egin{array}{c} R_{\gamma\gamma} > 1 \ \circ 0 \end{array}$	$egin{array}{l} 1 > {m R}_{\gamma\gamma} > {m 0.7} \ \circ m oldsymbol{\circ} m eta \end{array}$	
Invisible channel	s closed				

Intermediate and heavy DM

 $\delta_A = \delta_{H^{\pm}} = 1 \text{ GeV}$ R_{yy} 0.4 1.004 0.2 -1.002 l345 0.0 WMAP excluded 1 -0.2 0.998 0.996 -0.4 600 650 700 750 800 850 550

M_H[GeV]

- H of intermediate mass can constitute 100% of DM
- H constituting 100% DM inconsistent with $R_{\gamma\gamma} > 1$

• For heavy DM $R_{\gamma\gamma} \approx 1$ only very small deviations allowed

D. Sokołowska, EPS HEP 2013

Motivation 00	IDM oo	$h ightarrow \gamma \gamma$, $Z \gamma$ rates 0000	$egin{array}{c} {\cal R}_{\gamma\gamma}>1\ { m oo} \end{array}$	$1> R_{\gamma\gamma}>0.7$ 000	Summary •
Summa	ary				

- IDM in agreement with the data (LEP, LHC and WMAP)
- $R_{\gamma\gamma}$ and $R_{Z\gamma}$ positively correlated, $R_{\gamma\gamma} > 1 \Leftrightarrow R_{Z\gamma} > 1$
- $h \rightarrow \gamma \gamma$ can provide important information about IDM, because it is sensitive to M_H and $M_{H^{\pm}}$
- If substantial enhancement of $R_{\gamma\gamma}$
 - Only medium masses of DM
 - Light charged scalar
 - H subdominant component of the DM
- If H constitutes 100% of DM
 - Light DM excluded
 - Intermediate DM can accommodate only $R_{\gamma\gamma} < 1$
 - For heavy DM $R_{\gamma\gamma} \approx 1$

Motivation 00	IDM oo	$h o \gamma \gamma, \ Z \gamma \text{ rates}$	$egin{array}{c} {\cal R}_{\gamma\gamma} > {f 1} \ {f 00} \end{array}$	$1>R_{\gamma\gamma}>0.7$ 000	
Back up					

Motivation 00	IDM oo	$h o \gamma \gamma, \ Z \gamma$ rates 0000	${R_{\gamma\gamma}}>1$ 00	$1> R_{\gamma\gamma}>0.7$ 000	
Constra	aints				

- Vacuum stability: scalar potential V bounded from below
- **Perturbative unitarity**: eigenvalues Λ_i of the high-energy scattering matrix fulfill the condition $|\Lambda_i| < 8\pi$
- Existence of the Inert vacuum: Inert state a global minimum of the scalar potential $\Rightarrow m_{22}^2 \lesssim 9 \cdot 10^4 \text{ GeV}^2$
- *H* as DM candidate: $M_H < M_A$, $M_{H^{\pm}}$ and WMAP
- Electroweak Precision Tests (EWPT): *S* and *T* within 2σ (*S* = 0.03 ± 0.09, *T* = 0.07 ± 0.08, with correlation of 87%)
- LEP bounds on the scalars' masses
- LHC: $M_h \approx 125 \text{ GeV}$

Motivation 00	IDM oo	$h o \gamma \gamma$, $Z \gamma$ rates 0000	$egin{array}{c} {m R}_{\gamma\gamma} > {f 1} \ {f 00} \end{array}$	$1> R_{\gamma\gamma}>0.7$ 000	

Masses of the scalars

$$\begin{split} M_h^2 &= m_{11}^2 = \lambda_1 v^2 \\ M_{H^{\pm}}^2 &= \frac{1}{2} (\lambda_3 v^2 - m_{22}^2) \\ M_A^2 &= \frac{1}{2} (\lambda_{345}^- v^2 - m_{22}^2) \\ M_H^2 &= \frac{1}{2} (\lambda_{345} v^2 - m_{22}^2) \end{split}$$

Motivation	IDM	$h \rightarrow \gamma \gamma$, $Z \gamma$ rates	$R_{\gamma\gamma}>1$	$1>R_{\gamma\gamma}>0.7$	

$R_{\gamma\gamma} > 1$ – analytical solution

If invisible channels closed

$$R_{\gamma\gamma} = \frac{\Gamma(h \to \gamma\gamma)^{\text{IDM}}}{\Gamma(h \to \gamma\gamma)^{\text{SM}}}$$

 $\Rightarrow R_{\gamma\gamma} > 1$ can be solved analytically for $M_{H^\pm},\ m^2_{22}$

- Constructive interference
- $m_{22}^2 < -2M_{H^{\pm}}^2 \iff \lambda_{\mathbf{3}} < \mathbf{0})$
- with LEP bound on $M_{H^{\pm}} \Rightarrow m_{22}^2 < -9.8 \cdot 10^3 \,\mathrm{GeV}^2$

- Destructive interference
- IDM contribution ≥ 2× SM contribution
- big m^2_{22} required: $m^2_{22}\gtrsim 1.8\cdot 10^5\,{
 m GeV^2}$
- excluded by the condition for the Inert vacuum $m_{22}^2 \lesssim 9 \cdot 10^4 \, {\rm GeV}^2$

Motivation 00	IDM oo	$h ightarrow \gamma \gamma$, $Z \gamma$ rates 0000	${R_{\gamma\gamma}}>1$ 00	$1> {\cal R}_{\gamma\gamma}>0.7$ 000	
DM sign	als				

[see e.g.: M. Gustafsson, S. Rydbeck, L. Lopez Honorez, E. Löndstrom, Phys. Rev. D 86 (2012) 075019]

- gamma-ray lines
- cosmic and neutrino fluxes
- direct detection signals

Motivation	IDM	$h ightarrow \gamma \gamma$, $Z \gamma$ rates	$R_{\gamma\gamma}>1$	$1>R_{\gamma\gamma}>0.7$	

Limits on λ_{345} from Br($h \rightarrow inv$)

Motivation 00	IDM oo	$h ightarrow \gamma \gamma, \ Z \gamma \ { m rates}$	$egin{array}{c} {\cal R}_{\gamma\gamma}>1 \ { m oo} \end{array}$	$1> R_{\gamma\gamma}>0.7$ 000	

Comparison with XENON

DM-nucleon scattering cross section $\sigma_{\text{DM},N} \sim \lambda_{345}^2$

- $R_{\gamma\gamma}$ bounds on λ_{345} translated to the $(\sigma_{\text{DM},N}, M_H)$ plane
- Upper limits are stronger than those provided by XENON100

▶ ▲ 트 ▶ ▲ 트 ▶ 트 · · · 이 Q () ·