Q-balls, oscillons and total screening from ultramassive scalar fields

H. Arodź

Jagiellonian University, Cracow

Scalars 2013, Warsaw

Harmonically coupled, inverted pendulums

The signum-Gordon model

Real scalar field $\varphi(x, t)$ in 1+1 dimensions with

$$L = \frac{1}{2} (\partial_t \varphi \partial_t \varphi - \partial_x \varphi \partial_x \varphi) - g |\varphi|.$$

The signum-Gordon equation

$$\partial_t^2 \varphi - \partial_x^2 \varphi + g \operatorname{sign} \varphi = \mathbf{0},$$

sign 0 = 0, g > 0, all variables dimensionless.

Comparing with the φ^4 scalar field:

- Lack of linear regime around the vacuum field $\varphi = 0$
- ▶ the V-shaped field potential \rightarrow ' $m_0^2 = \infty$ ', the ultramassive field

General features in any dimensions $d \ge 2$:

- Scale invariance of the 'on shell' type with unusual exponent
- Parabolic approach to the vacuum field (compactness)
- Relatively easy to solve analytically

The scale invariance

Take a solution $\varphi(x, t)$ of s-G equation; then

$$\varphi_{\lambda}(\mathbf{x},t) = \lambda^2 \ \varphi(\frac{\mathbf{x}}{\lambda},\frac{t}{\lambda}),$$

 $\lambda > 0$, also obeys that equation. The action is not invariant. There exists a rich variety of self-similar solutions.

The total energy

$$E[\varphi] = \frac{1}{2} \int dx \left[(\partial_t \varphi)^2 + (\partial_x \varphi)^2 \right] + g \int dx |\varphi|$$

scales as

$$\mathsf{E}[\varphi_{\lambda}] = \lambda^3 \mathsf{E}[\varphi].$$

In the limit $\lambda \to 0$: high frequencies, short waves, small amplitude and small energy .

For the massless φ^4 : $\lambda^2 \to \lambda^{-1}$, small energy and amplitude appear in the limit $\lambda \to \infty$. Then frequencies are low and waves long.

The total screening of charges (example)

Signum-Gordon equation with point-like external sources on the r.h.s. Three identical point charges totally screened by the scalar field φ :

World-sheet of the swaying oscillon

 $gt \rightarrow t, gx \rightarrow x$

The structure of $\varphi_{-}(x, t)$

$$\varphi_a = -\frac{(x-vt)^2}{2(1-v^2)}, \quad \varphi_b = \frac{t^2}{2} - \frac{tx}{1+v}, \quad \varphi_c = \frac{t^2}{2} + \frac{t(x-1)}{1-v}, \dots$$

Plot of $\varphi_{-}(x, t)$

v = 1/2

the dashed line: t = 1/8, the continuous line: t = 3/8

Q-balls in the complex signum-Gordon model

The complex signum-Gordon model: $L = \partial_{\mu}\psi^*\partial^{\mu}\psi - g |\psi|.$

The U(1) charge:
$$Q = \frac{1}{2i} \int d^d x \left(\psi^* \partial_0 \psi - \partial_0 \psi^* \psi \right).$$

Time-periodic solutions of the form $\psi(\vec{x}, t) = F(r) \exp(i\omega t)$, with finite total energy (nontopological solitons), real F, $\omega > 0$, Q > 0.

$$F'' + \frac{d-1}{r}F' + \omega^2 F = \frac{g}{2}\operatorname{sign} F,$$
$$Q = c_1 \frac{\lambda^2}{\omega^{d+3}}, \quad E = c_2 g^{\frac{2}{d+3}} \left(\frac{Q}{c_1}\right)^{\frac{d+2}{d+3}},$$

where the numerical constants c_1 , c_2 dependent only on d. Explicit solutions in d = 1, 2, 3 with compact support and arbitrary $\omega > 0$ are known.

The model can be extended by including the electromagnetic field. Interesting new feature: a transition from spherical Q-balls to Q-shells at large values of the charge Q.

Odd features of the ultramassive fields

- > The lack of linear regime in a vicinity of the vacuum field
- Numerical methods do not work well here
- Few applications as yet
 - the pendulums and the like
 - boson stars
- How to construct a quantum counterpart?

References:

arXiv: ... [hep-th], Phys. Rev. D and E, Acta Phys. Polon. B

Odd features of the ultramassive fields

- > The lack of linear regime in a vicinity of the vacuum field
- Numerical methods do not work well here
- Few applications as yet
 - the pendulums and the like
 - boson stars
- How to construct a quantum counterpart?

References:

arXiv: ... [hep-th], Phys. Rev. D and E, Acta Phys. Polon. B

* * *

