

New modules and interfaces to constrain multi-Higgs models

R. Coimbra & A. Morais & M. Sampaio & R. Santos

15th September, 2013

Scalars 2013, University of Warsaw

Based on: Eur.Phys.J. C73 (2013) 2428 [arXiv:1301.2599] http://scanners.hepforge.org

Standard Model

=- + Fron Front + i & By + he. + 4: 4: 4; 4; + h.o. + D

Why BSM scalar extensions?

In spite of the theoretical success:

In spite of the theoretical success:

1 Radiative corrections $(\Lambda_{cutoff} \sim M_{Pl}) \Rightarrow \frac{\delta m_h^2}{m_h^2} \sim 10^{-16}$:

In spite of the theoretical success:

1 Radiative corrections $(\Lambda_{\text{cutoff}} \sim M_{Pl}) \Rightarrow \frac{\delta m_h^2}{m_h^2} \sim 10^{-16}$:

SUSY, Extra dimensions,... \Rightarrow Extended scalar sectors

In spite of the theoretical success:

1 Radiative corrections $(\Lambda_{\text{cutoff}} \sim M_{Pl}) \Rightarrow \frac{\delta m_h^2}{m_h^2} \sim 10^{-16}$:

SUSY, Extra dimensions,... \Rightarrow Extended scalar sectors

2 SM does not explain:

In spite of the theoretical success:

1 Radiative corrections $(\Lambda_{\text{cutoff}} \sim M_{Pl}) \Rightarrow \frac{\delta m_h^2}{m_h^2} \sim 10^{-16}$:

2 SM does not explain:

- Dark matter relic density
- Neutrino masses

Flavour structure

SUSY, Extra dimensions,... \Rightarrow Extended scalar sectors

In spite of the theoretical success:

1 Radiative corrections $(\Lambda_{\text{cutoff}} \sim M_{Pl}) \Rightarrow \frac{\delta m_h^2}{m_c^2} \sim 10^{-16}$:

2 SM does not explain:

- Dark matter relic density -
- Neutrino masses
- Flavour structure

3 Scalar sector prone to coupling to hidden sectors!

Only SM singlets with dimension < 4 are: $H^{\dagger}H$, $B_{\mu\nu}$, $H^{\dagger}L$ James Wells' review arXiv:0909.4541

SUSY, Extra dimensions,... \Rightarrow Extended scalar sectors

In spite of the theoretical success:

1 Radiative corrections $(\Lambda_{\text{cutoff}} \sim M_{Pl}) \Rightarrow \frac{\delta m_h^2}{m_c^2} \sim 10^{-16}$:

SUSY, Extra dimensions,... \Rightarrow Extended scalar sectors

2 SM does not explain:

- Dark matter relic density –
- Neutrino masses
- Flavour structure

3 Scalar sector prone to coupling to hidden sectors!

Only SM singlets with dimension < 4 are: $H^{\dagger}H$, $B_{\mu\nu}$, $H^{\dagger}L$ James Wells' review arXiv:0909.4541

Extended scalar sectors can address these problems.

Aim of this talk:

- Tool to Scan parameter space of Scalar sectors.
- **Automatise** scans for tree level renormalisable *V*_{scalar}.
- Generic routines, flexible user analysis & interfaces.

ScannerS.hepforge.org

Aim of this talk:

- Tool to Scan parameter space of Scalar sectors.
- Automatise scans for tree level renormalisable V_{scalar}.
- Generic routines, flexible user analysis & interfaces.

ScannerS.hepforge.org

Aim of this talk:

- Tool to Scan parameter space of Scalar sectors.
- Automatise scans for tree level renormalisable V_{scalar}.
- Generic routines, flexible user analysis & interfaces.

ScannerS.hepforge.org

1 ScannerS: A tool to constrain the parameter space

- Overview of the tool
- Workflow

2 Strategy, modules & interfaces

- The internal modules
- The external interfaces

ScannerS: A tool to constrain the parameter space

Overview of the tool

Workflow

2 Strategy, modules & interfaces
 The internal modules
 The external interfaces

Doublets, complex, reals, etc ...

$$V(H, S, \phi, \chi, \ldots) \rightarrow \begin{array}{c} H, H^{\dagger} \\ \mathbb{S}, \mathbb{S}^{*} \\ \phi, \chi \end{array}$$

Doublets, complex, reals, etc ...

$$V(H, S, \phi, \chi, \ldots) \rightarrow \begin{array}{c} H, H^{\dagger} \\ \mathbb{S}, \mathbb{S}^{\star} \\ \phi, \chi \\ \cdots \\ \cdots \end{array} \rightarrow \begin{pmatrix} \phi_{0} \\ \phi_{1} \\ \cdots \\ \phi_{n} \end{pmatrix}$$

Doublets, complex, reals, etc ...

$$V(H, S, \phi, \chi, \ldots) \rightarrow \begin{array}{c} H, H^{\dagger} \\ \mathbb{S}, \mathbb{S}^{\star} \\ \phi, \chi \\ \cdots \end{array} \rightarrow \begin{pmatrix} \phi_{0} \\ \phi_{1} \\ \cdots \\ \phi_{n} \end{pmatrix} \rightarrow V = V_{a}(\phi_{i})\lambda_{a}$$

Doublets, complex, reals, etc ...

$$V(H, S, \phi, \chi, ...) \rightarrow \begin{array}{c} H, H^{\dagger} \\ S, S^{\star} \\ \phi, \chi \\ \dots \end{array} \rightarrow \begin{pmatrix} \phi_{0} \\ \phi_{1} \\ \dots \\ \phi_{n} \end{pmatrix} \rightarrow V = V_{a}(\phi_{i})\lambda_{a}$$

$$Numeric VEV$$

	$\phi_i = \mathbf{V_i} + \delta\phi_i$

Doublets, complex, reals, etc ...

 \rightarrow Decompose *n* reals $V(H, S, \phi, \chi, \ldots) \rightarrow \begin{array}{c} H, H^{\dagger} \\ \mathbb{S}, \mathbb{S}^{\star} \\ \phi, \chi \\ \cdots \end{array} \rightarrow \begin{pmatrix} \phi_{0} \\ \phi_{1} \\ \cdots \\ \phi_{n} \end{pmatrix} \rightarrow V = V_{a}(\phi_{i})\lambda_{a}$

	Numeric VEV $\phi_i = \mathbf{v}_i + \delta \phi_i$ Min. Conditions $\Rightarrow \langle \partial_i V \rangle_a \lambda_a = 0$ λ_a λ_a $\lambda_a = 0$

Doublets, complex, reals, etc ...

1 ScannerS: A tool to constrain the parameter space

- Overview of the tool
- Workflow

2 Strategy, modules & interfaces
 The internal modules
 The external interfaces

```
1 Input - ScannerSInput.nb
```

 \rightarrow model.in

2 Analysis - ScannerSUser.cpp

 $\rightarrow \text{model.out}$

3 Compile & Run - makefile

- \$ make
- \$./ScannerS -i model.in
- \$./ScannerS --help

Input - ScannerSInput.nb

- Expression for $V(\phi_i)$
- Numerical ranges for $\{v_i, m_i^2, \lambda_a^2\}$

 \rightarrow model.in

2 Analysis - ScannerSUser.cpp

 $\rightarrow model.out$

3 Compile & Run - makefile

- \$ make
- \$./ScannerS -i model.in
- \$./ScannerS --help

Vscalar = ComplexExpand[$\lambda[0] \oplus 1Dag. \oplus 1 + \lambda[1] \oplus 2Dag. \oplus 2 - \lambda[2] (\oplus 1Dag. \oplus 2 + \oplus 2Dag. \oplus 1) + \lambda[3] / 2 (\oplus 1Dag. \oplus 1) ^2 + \dots$

1 Input - ScannerSInput.nb

- Expression for $V(\phi_i)$
- Numerical ranges for $\{v_i, m_i^2, \lambda_a^2\}$

 \rightarrow model.in

2 Analysis - ScannerSUser.cpp

Vscalar = ComplexExpand[
λ [0] Φ 1Dag. Φ 1 + λ [1] Φ 2Dag. Φ 2 -					
λ [2] (Φ 1Dag. Φ 2 + Φ 2Dag. Φ 1) +					
λ [3] / 2 (Φ 1Dag. Φ 1) ^2 +					
ϕ Min[2] = 246;	<pre>massmin[0] = 125;</pre>				
ϕ Max[2] = 246;	<pre>massmax[0] = 125;</pre>				
$\phi \min[6] = 0;$	$\lambda Min[0] = -10^{6};$				
ϕ Max[6] = 500;	$\lambda Max[0] = 10^{6};$				

 $\rightarrow \text{model.out}$

3 Compile & Run - makefile

\$ make

- \$./ScannerS -i model.in
- \$./ScannerS --help

Input - ScannerSInput.nb

- Expression for $V(\phi_i)$
- Numerical ranges for $\{v_i, m_i^2, \lambda_a^2\}$

 \rightarrow model.in

- 2 Analysis ScannerSUser.cpp
 - Template functions
 - User Analysis (accept/reject)

 \rightarrow model.out

$$\begin{split} \lambda[0] & \oplus 1 \text{Dag} \cdot \oplus 1 + \lambda[1] & \oplus 2 \text{Dag} \cdot \oplus 2 - \\ \lambda[2] & (\oplus 1 \text{Dag} \cdot \oplus 2 + \oplus 2 \text{Dag} \cdot \oplus 1) + \\ \lambda[3] / 2 & (\oplus 1 \text{Dag} \cdot \oplus 1) \wedge 2 + \dots \\ \\ \phi \text{Min}[2] &= 246; \quad \text{massmin}[0] &= 125; \\ \phi \text{Max}[2] &= 246; \quad \text{massmax}[0] &= 125; \\ \phi \text{Min}[6] &= 0; \quad \lambda \text{Min}[0] &= -10 \wedge 6; \\ \phi \text{Max}[6] &= 500; \quad \lambda \text{Max}[0] &= 10 \wedge 6; \\ \end{split}$$

Vscalar = ComplexExpand[

bool CheckStability(LambdaRef & L); bool CheckGlobal(PhiRef & Phi,Lambd bool UserAnalysis(PhiRef & Phi,Lamb

3 Compile & Run - makefile

- \$ make
- \$./ScannerS -i model.in
- \$./ScannerS --help

1 Input - ScannerSInput.nb

- Expression for $V(\phi_i)$
- Numerical ranges for $\{v_i, m_i^2, \lambda_a^2\}$

 \rightarrow model.in

- 2 Analysis ScannerSUser.cpp
 - Template functions
 - User Analysis (accept/reject)

 $\rightarrow \text{model.out}$

- 3 Compile & Run makefile
 - Paths to libraries
 - Turn on/off options
 - \$ make
 - \$./ScannerS -i model.in
 - \$./ScannerS --help

Vscalar = ComplexExpand[
λ [0] Φ 1Dag. Φ 1 + λ [1] Φ 2Dag. Φ 2 -						
λ [2] (Φ 1Dag. Φ 2 + Φ 2Dag. Φ 1) +						
Φ1Dag.Φ1)^2 +						
<pre>massmin[0] = 125;</pre>						
<pre>massmax[0] = 125;</pre>						
$\lambda Min[0] = -10^{6};$						
$\lambda Max[0] = 10^{6};$						

bool CheckStability(LambdaRef & L); bool CheckGlobal(PhiRef & Phi,Lambd bool UserAnalysis(PhiRef & Phi,Lambd

Image: Imag

SuperisoPath=/home/mops2/local_src/superiso_v3.3
#Example: /home/user1/local/src/superiso_v3.3
#Tested with superiso v3.3

A typical run in VERBOSE mode

A typical run in VERBOSE mode

<u>F</u> ile	<u>E</u> dit	<u>I</u> nsert	Fo <u>r</u> mat	<u>C</u> ell	<u>G</u> raphics	E <u>v</u> aluation	<u>P</u> alettes	<u>W</u> indow			
						<u>E</u> valuate	e Cells				
						Evaluate	e in <u>P</u> lace		\rightarrow mo	del.in	
	S	ra	nn	Р	rS I	Evaluate		sion			
						Evaluate	e N <u>o</u> tebool	< 🔓			
File	Edi⊦	View S	oarch To	rmina	l Helo						
****	**										
****	**	- Inde	ependent	t par	ameters	generated	after 1	VEVs and	Mixings		
****	**										
21		unling	17 is i	inder	endent						
	Ma	iss of	state (0 is	independ	lent.					
	Ne Ma	iss of	state :	1 is	independ	lent.					
	Ma	iss of	state 2	2 is	independ	lent.					
	Ma	iss of	state 4	4 is	independ	lent.					
***	в1 в1										
v[0]	=	- Mixi	ing mat	rix -							
+ 0	.0										
v[1]	= No	te: M_	_{jk} -:	> ind	lices j (lines) ar	e mass (eigensta	tes and k	(columns) are ori	ginal states
+ 0.	00										
	j	= 0			000000.0	4 70			00000-00	0.000000.00	0.000000.00
v[2]	= i	- 1	0e+00	0.0	000000000000000000000000000000000000000	4.79	20558-0	1 0.0	000000000000000000000000000000000000000	0.0000000000000000000000000000000000000	0.0000000000000000000000000000000000000
+ -2	.60.	000000	0e+00	0.0	00000e+0	0 -8.7	76700e-	91 0.0	00000e+00	0.000000e+00	0.000000e+00
. –	j	= 2									
	de 0.	000000	0e+00	0.0	00000e+0	0.00	0000e+0	9.6	29531e-01	0.000000e+00	0.000000e+00
***	Grj	= 3									
v[3]	= 0.	000000	0e+00	-9.	.629531e-	01 0.00	0000e+0	0.0	000000e+00	0.000000e+00	2.696690e-01
+ 0	. U]	= 4	0-01		000000+0		00000+0	a a a	000000-00	-2 6966990-01	0 000000+00
+ 0	.0 i	= 5	10-01	0.0	000000000000000000000000000000000000000	0.00	000000400	0.0	000000000000000000000000000000000000000	-2.0900908-01	0.0000000000000000000000000000000000000

A typical run in VERBOSE mode

<u>F</u> ile	<u>E</u> dit	<u>I</u> nsert	Fo <u>r</u> mat	<u>C</u> ell	<u>G</u> raphics	E <u>v</u> aluation	Palettes	<u>W</u> indow	
	50	ca	nn	eı	rS I	<u>E</u> valuate Evaluate Evaluate Evaluate	e Cells e in <u>P</u> lace e in <u>S</u> ubses e N <u>o</u> tebool	ssion k	\rightarrow model.in
File	Edir *** *** Ma Ma Bl Bl Ma Ma Ma Ma Ma Ma Ma Ma Ma Ma Ma Ma Ma	View 9 	Tearch Tears Tears Ma Sound to [0]=1.2; [1]=3.6 [2]=3.9 [3]=1.0 [3]=1.0 [5]=0.0 [6]=0.0 [7]=0.0 [7]=0.0 [0]=1.4	asses asses be e 50000 74687 07081 92241 92241 92241 92241 92241 92241 000000 000000	genstate igenstat e+02 e+02 e+02 e+02 e+02 e+00 e+00 e+00	$\left(\begin{array}{c} \cdot\\ $	as in f	the desc	ription above (see NEW BASIS section abov
(*** (v[3]: + 0 v[4]: + 0	j Grj = 0. .0j = 9. .0j	= 2 L .000 L = 3 L .000 L = 4 L .629 L = 5 L	[2]=3.0 [2]=3.0 [3]=-6.1 [4]=6.1 [5]=-4.1 [6]=4.1 [7]=-5.	98686 91755 25765 77377 90085 50682	e+04 4e-01 e-01 5e+00 e+00 5e-01				$Output \to model.out$
A typical run in VERBOSE mode

<u>F</u> ile	<u>E</u> dit	<u>I</u> nsert	Fo <u>r</u> mat	<u>C</u> ell	<u>G</u> raphics	E <u>v</u> aluation	Palettes	<u>W</u> indow	
	50	ca	nn	eı	rS I	<u>E</u> valuate Evaluate Evaluate Evaluate	e Cells e in <u>P</u> lace e in <u>S</u> ubses e N <u>o</u> tebool	ssion k	\rightarrow model.in
File ***** 200 	Edi: *** *** Ma Ma Bl Ma Bl Ma Ma Ma Ma Ma Ma Ma Ma Ma Ma Ma Ma Ma	View 9 	Coarch To pte: Ma pound to [0]=1.2; [1]=3.6 [2]=3.9 [3]=1.00 [4]=1.00 [5]=0.00 [6]=0.00 [7]=0.00	asses asses be e 50000 74687 07081 92241 92241 92241 92241 92241 92241 000000 000000	genstate igenstat e+02 e+02 e+02 e+02 e+02 e+00 e+00 e+00	$ \begin{array}{c} \cdot \\ \cdot $	as in f	the desc	ription above (see NEW BASIS section abov
*** v[3]: + 0 v[4]: + 0	j Grj = 0. .0j = 9. .0j	= 2 L 0000 L 0000 L = 3 L 0000 L = 4 L 629 L = 5 L	[2]=3.0 [3]=-6.1 [4]=6.1 [5]=-4.1 [6]=4.10 [7]=-5.	98686 91755 25765 77377 90085 50682	e+04 4e-01 e-01 5e+00 e+00 5e-01				$Output \to model.out$

ScannerS: A tool to constrain the parameter space Overview of the tool

Workflow

Strategy, modules & interfaces The internal modules The external interfaces

Overview of the tool

Doublets, complex, reals, etc ... \rightarrow Decompose *n* reals

$$V(H, S, \phi, \chi, ...) \rightarrow \begin{array}{c} H, H^{\dagger} \\ \$, \$^{\star} \\ \phi, \chi \\ \dots \end{array} \rightarrow \begin{pmatrix} \phi_{0} \\ \phi_{1} \\ \dots \\ \phi_{n} \end{pmatrix} \rightarrow V = V_{a}(\phi_{i})\lambda_{a}$$
$$\begin{array}{c} \\ Numeric \ VEV \\ \phi_{i} = \mathbf{v}_{i} + \delta\phi_{i} \\ Min. \ Conditions \\ \Rightarrow \langle \partial_{i} V \rangle_{a}\lambda_{a} = 0 \end{array}$$

Vacuum linear conditions

$$\phi_i = \mathbf{v}_i + \delta \phi_i \Rightarrow \langle \partial_i V \rangle_a \lambda_a = \mathbf{0}$$

 $\phi_1 \blacktriangle v_1^2 + v_2^2 = v^2$

Also flexible Template function

 \rightarrow User defined arbitrary parametric form.

Example:
$$\begin{cases} \phi_1 = v \cos \beta \\ \phi_2 = v \sin \beta \end{cases}$$

void <code>MyPhiParametrization(</code>const <code>PhiParamVec</code> &,<code>PhiVec</code> &); $^{\phi_2}$

Overview of the tool

Quadratic conditions for physical states:

$$\frac{\partial^2 V}{\partial H_i \partial H_j} \bigg|_{H_i = 0} \to \mathbf{M}^T \Big\langle \widehat{\partial}^2 V \Big\rangle_{a_2} \mathbf{M} \, \lambda_{a_2} = \mathbf{Diag}(m_i^2)$$

Quadratic conditions for physical states:

$$\frac{\partial^2 V}{\partial H_i \partial H_j} \bigg|_{H_i = 0} \to \mathbf{M}^T \Big\langle \widehat{\partial}^2 V \Big\rangle_{a_2} \mathbf{M} \, \lambda_{a_2} = \mathbf{Diag}(m_i^2)$$

VEVs fixed \Rightarrow set of constant matrices $\left\{ \left\langle \widehat{\partial}^2 V \right\rangle_{a_2} \right\}$

 \rightarrow What is the block diagonal decomposition? Murota, Kanno, Kojima, Kojima, Japan J. Indust. App. Math. (2010) 27:125-160

Quadratic conditions for physical states:

$$\frac{\partial^2 V}{\partial H_i \partial H_j} \bigg|_{H_i = 0} \to \mathbf{M}^T \Big\langle \widehat{\partial}^2 V \Big\rangle_{a_2} \mathbf{M} \, \lambda_{a_2} = \mathbf{Diag}(m_i^2)$$

VEVs fixed \Rightarrow set of constant matrices $\left\{ \left\langle \widehat{\partial}^2 V \right\rangle_{a_2} \right\}$

- \rightarrow What is the block diagonal decomposition? Murota, Kanno, Kojima, Kojima, Japan J. Indust. App. Math. (2010) 27:125-160
- 1- Random linear $\mathbf{A} = \left\langle \widehat{\partial}^2 V \right\rangle_{a_2} R_{a_2}^{(1)}$

Quadratic conditions for physical states:

$$\frac{\partial^2 V}{\partial H_i \partial H_j} \bigg|_{H_i = 0} \to \mathbf{M}^T \Big\langle \widehat{\partial}^2 V \Big\rangle_{a_2} \mathbf{M} \, \lambda_{a_2} = \mathbf{Diag}(m_i^2)$$

VEVs fixed \Rightarrow set of constant matrices $\left\{ \langle \hat{\partial}^2 V \rangle_{a_2} \right\}$

 \rightarrow What is the block diagonal decomposition? Murota, Kanno, Kojima, Kojima, Japan J. Indust. App. Math. (2010) 27:125-160

1- Random linear $\mathbf{A} = \left\langle \widehat{\partial}^2 V \right\rangle_{a_2} R_{a_2}^{(1)} \qquad \mathbf{A} \to diagonal$

2- Find eigen basis

Quadratic conditions for physical states:

$$\frac{\partial^2 V}{\partial H_i \partial H_j} \bigg|_{H_i = 0} \to \mathbf{M}^T \Big\langle \widehat{\partial}^2 V \Big\rangle_{a_2} \mathbf{M} \, \lambda_{a_2} = \mathbf{Diag}(m_i^2)$$

VEVs fixed \Rightarrow set of constant matrices $\left\{ \langle \hat{\partial}^2 V \rangle_{a_2} \right\}$

 \rightarrow What is the block diagonal decomposition? Murota, Kanno, Kojima, Kojima, Japan J. Indust. App. Math. (2010) 27:125-160

 $\mathbf{A} = \left\langle \widehat{\partial}^2 V \right\rangle_{a_2} R_{a_2}^{(1)} \qquad \mathbf{A} \to \text{diagonal}$

1- Random linear 2- Find eigen basis

3-2nd Random $\mathbf{B} = \left\langle \widehat{\boldsymbol{\partial}}^2 V \right\rangle_{a_2} R_{a_2}^{(2)}$

In A-eigen basis !!!!

$$\begin{pmatrix} \lambda_1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \lambda_2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \lambda_3 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \lambda_4 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \lambda_5 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \lambda_6 & 0 \\ 0 & 0 & 0 & 0 & 0 & \lambda_7 \end{pmatrix}$$

Block detection – toy \mathbb{Z}_2 symm. 2HDM + 2HDM

	Mix	ing matr	ix													
	Note: M φ_0	∟{jk} -> <i>Ф</i> 1	indices ϕ_2	j (line ϕ_3	s) are m ϕ_4	ass eige ϕ_5	nstates ϕ_6	and k (c ϕ_7	olumns) ϕ_8	are orig ϕ_9	inal sta ϕ 10	ϕ_{11}	ϕ_{12}	ϕ_{13}	ϕ_{14}	ϕ_{15}
 <u> - 1</u>	0		Θ		Θ	0					0.6243				-0.7812	
h_1] = 1 0				Θ	0					-0.7812				-0.6243	
h_2	j = 2 0		0.8362		0	0	0.5484									0
H_2	j = 3 0	Θ	0.5484	Θ	0	0	-0.8362							0		
A 1	j = 4 0	0	0	-0.8243	0	0	0	0.5661	0	0	0	0	0	0	0	0
A 2	j = 5 0	0	0	0	0	0	0	0	0	0	0	-0.5758	0	0	0	0.81
$\Re H_1^+$	j = 6 0	-0.8243	0	0	0	0.5661	0	0	0	0	0	0	0	0	0	0
ે <i>H</i> ₁+	j = 7 0.8243	0	Θ	Θ	-0.5661	Θ	0	0	0	0	0	0	0	0	0	Θ
$\Re H_{2}^{+}$	j = 8 0	0	0	0	0	0	0	0	0.5758	0	0	0	-0.8176	0	0	0
€ €	j = 9		0	•	•	•	•	۰ ۵		- A E7E9	•	•	•	0 0176	Š	•
G.	j = 10	-	-	-	-	•	•	-	-	-0.3738	•		-	0.8170	-	
G	0 j = 11	O	U	e	U	U	U	U	U	Θ	O	-0.8176	U	U	C	-0.5
	0 j = 12	0.1639	Θ	0.5419	Θ	0.2387	Θ	0.789	0	Θ	Θ	Θ	Θ	Θ	0	0
G ₃	0.5661 1 = 13		0		0.8243	0										
G_4	0 = 14				Θ	Θ				-0.8176				-0.5758		
G_5	0 = 14				0	0			0.8176				0.5758			Θ
G_6	J = 15 0	-0.5419	0	0.1639	0	-0.789		0.2387						0	0	0

Block detection – toy \mathbb{Z}_2 symm. 2HDM + 2HDM

	Mix	ing matr	ix		**** 6.73 -7.2 0.00	*** Inter 89350e-0: 341984e-0 00000e+00 00000e+00	rnal mix 1 7.3 91 6.7 9 0.0 9 0.0	ing matr 41984e-0: 89350e-0: 00000e+00 00000e+00	ix ***** 1 0.0 1 0.0 0 -5. 0 -8.	* 000000e+0 00000e+0 086812e- 609549e-	0 0.0 0 0.0 01 8.6 01 -5.	00000e+0 00000e+0 09549e-0 086812e-	9 9 1 91			
	Note: M ϕ_0	L{jk} -> ∅1	indices ϕ_2	j (line: ϕ_3	s) are m ϕ_4	ass eige ϕ_5	nstates ϕ_6	and k (c ϕ 7	olumns) ϕ_8	are orig ϕ_9	inal sta ϕ 10	$\overset{tes}{\phi}$ 11	ϕ_{12}	ϕ_{13}	ϕ_{14}	ϕ_{15}
) = 0 0 1 = 1		0		0	0					0.6243				-0.7812	
n ₁	J = 1 0				0	0					-0.7812				-0.6243	
h ₂	J = 2 0 ↓ ⊃		0.8362		0	0	0.5484									0
H_2] = 3 0		0.5484	0	0	0	-0.8362									
A_1] = 4 0	Θ		-0.8243	0	0		0.5661								
A ₂] = 5 0				0	0						-0.5758				0.81
$\mathcal{R}H_{1}^{+}$] = 6 0	-0.8243			0	0.5661										
ઝે <i>H</i> ⁺	j = 7 0.8243		0		-0.5661	0										
$\Re H_2^+$	j = 8 0				0	0			0.5758				-0.8176			
ે∂ <i>H</i> 2 ⁺	j = 9 0	O			0	0				-0.5758				0.8176		
G_1	j = 10 0				0	0						-0.8176				-0.5
G_2	j = 11 0	0.1639		0.5419	0	0.2387		0.789						0		
G_3	j = 12 0.5661		0		0.8243	0										
G_4	j = 13 0	Θ	0	0	0	0	0	0	0	-0.8176	0	0	0	-0.5758	0	Θ
G_5	j = 14 0	0	0	0	0	0	0	0	0.8176	0	0	0	0.5758	0	0	0
G_6	j = 15 0	-0.5419		0.1639	0	-0.789		0.2387						0		

Block detection – toy \mathbb{Z}_2 symm. 2HDM + 2HDM

$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Mix	ing matr	ix		* - 0 0	***** In .789350e 7.341984e .000000e .000000e	cernal -01 e-01 +00 +00	l mix 7.3 6.7 0.0 0.0	ing matr 41984e-0 89350e-0 00000e+0 00000e+0	rix *** 91 6 91 6 90 -	*** 0.0000000 0.0000000 5.086812 8.609549	e+00 0.0 e+00 0.0 2e-01 8.6 9e-01 -5.	000000e+0 000000e+0 09549e-0 086812e-	9 9 1 91			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Note: M ϕ_0	_{jk} -> ∅1	indices ϕ_2	j (line: ϕ_3	s) are ϕ_4	mass ei ϕ_5	gensta ϕ_6	ates	and k (a ϕ 7	columns ϕ_8	;) are or ϕ_9	riginal sta ϕ 10	ϕ_{11}	ϕ_{12}	ϕ_{13}	ϕ_{14}	ϕ_{15}
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	H_1] = 0 0		0		ø	Θ						0.6243				-0.7812	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	h_1	j = 1 0 i - 2				Θ	Θ						-0.7812	Θ			-0.6243	
$\begin{array}{c} H_2 \\ H_2 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	n ₂	J = 2 0		0.8362		Θ	Θ	0.	5484									0
$ \begin{array}{c} A_1 \\ A_2 \\ A_2 \\ A_2 \\ A_3 \\ A_4 \\ A_4 \\ A_5 \\ A_2 \\ A_4 \\ A_5 \\ A_4 \\ A_5 \\ A_5 \\ A_6 $	H_2] = 3 0		0.5484	Θ	0	Θ	- 0 .	.8362									
$\begin{array}{c} A_2 \\ B_1 \\ B_2 \\ B_1 \\$	A 1] = 4 0	0		-0.8243	0	0			0.5661								
$ \begin{array}{c} R_{1}H_{1}^{+} & 0 & 0 & 0 & 0 & 0 \\ R_{1}H_{1}^{+} & 0 & 0 & 0 & 0 & 0 & 0 \\ R_{2}H_{1}^{+} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ R_{2}H_{1}^{+} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ R_{2}H_{2}^{+} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ R_{2}H_{2}^{+} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & $	A ₂	j = 5 0				0	0							-0.5758				0.81
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\Re H_1^+$	j = 6 0	-0.8243		¢											0		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ે∂ <i>H</i> ⁺	j = 7 0.8243		0	e	Masse	s			Coupl	lings -	···· -				0		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\Re H_2^+$	j = 8 0	0	0	e Note:	Mass e	igenstat	es or	 L[0]:	=5348			bi[0]_0			0	0	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	<i>ે.</i> Ηુ [∓]	j = 9 0	0	0	M[0]=1	62.1	etgenst	ates	L[1]:	=2522		P	hi[1]=0			0.8176	0	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\overline{G_1}$	j = 10 0	0	0	M[1]=1 e ^{M[2]=0}	28 .983			L[3]	=-0.2757	7	P	hi[2]=139. hi[3]=0	3		Θ	0	-0.5
$ \begin{array}{c} G_3 \\ G_3 \\ G_4 \\ G_5 \\ G_6 \\ G$	G_2	j = 11 0	0.1639	0	M[3]=1 e ^{M[4]=1}	.32 87.5			L[5]:	=0.7151	,	P P	hi[4]=0 hi[5]=0			0	0	Θ
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\overline{G_2}$	j = 12	0	9	M[5]=3 M[6]=1	8.03 59.9			L[7]:	=-0.1343	3	P P	hi[6]=202. hi[7]=0	8		0	0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	G	j = 13	•	•	M[7]=1 M[8]=2	59.9 89.9			L[8]: L[9]:	=6851 =2.302e+	+04	P P	hi[8]=0 hi[9]=0			A 5759	•	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	G	j = 14	0	0	M[9]=2	89.9 0			L[10 L[11]=2.169e]=0.1229	≥+04 9	P	hi[10]=201			-0.3738	0	0
G 0 -0.5419 0<	G.	0 j = 15		U	M[11]=	0 9			L[12 L[13]=-0.417]=1.847	74	P	hi[12]=0			U		U
$H_{15}=0$ Phi[15]=0 Phi[15]=0	G ₆	0	-0.5419	Θ	M[13]=	0			L[14]=-1.992	2	P	hi[14]=141	.6		0	0	0
I of I potnes done:					M[14]= M[15]=	0			2115			р 1	hi[15]=0 of 1 poin	ts done!				

Summary of the strategy:

Summary of the strategy:

1 Generate $\mathbf{v}_{\mathbf{i}}$ & eliminate λ_{a_1} in favour of λ_{a_2}

Summary of the strategy:

- **1** Generate \mathbf{v}_{i} & eliminate $\lambda_{a_{1}}$ in favour of $\lambda_{a_{2}}$
- **2** Generate \mathbf{M}_{ij} . Eliminate some params in $\{\lambda_{a_2}, m_i^2\}$

 $V(\phi_i)$

 H_1

 H_{2}

3 Generate the remaining indep. params uniformly.

Summary of the strategy:

- **1** Generate v_i & eliminate λ_{a_1} in favour of λ_{a_2}
- **2** Generate \mathbf{M}_{ij} . Eliminate some params in $\{\lambda_{a_2}, m_i^2\}$
- 3 Generate the remaining indep. params uniformly.
- \Rightarrow Local minimum without solving non-linear equations! \Rightarrow Full physical basis info, for parameter space point.

Delay non-linear/expensive tasks to increase efficiency!

 $V(\phi_i)$

 H_1

 H_{2}

Overview of the tool

$$(\ldots, |\Phi_i\rangle, \ldots) \equiv \left(\frac{1}{\sqrt{2!}} |\phi_1\phi_1\rangle, \ldots, \frac{1}{\sqrt{2!}} |\phi_N\phi_N\rangle, |\phi_1\phi_2\rangle, \ldots, |\phi_{N-1}\phi_N\rangle\right)$$

$$(\ldots, |\Phi_i\rangle, \ldots) \equiv \left(\frac{1}{\sqrt{2!}} |\phi_1\phi_1\rangle, \ldots, \frac{1}{\sqrt{2!}} |\phi_N\phi_N\rangle, |\phi_1\phi_2\rangle, \ldots, |\phi_{N-1}\phi_N\rangle\right)$$

$$|\Phi_i\rangle \qquad |\Phi_j\rangle \quad , \Re\{a_{ij}^{(0)}\} < \frac{1}{2} , \ a_{ij}^{(0)} = \frac{\langle \Phi_i | i\mathbf{T}^{(0)} | \Phi_j \rangle}{16\pi} \sim \sum_{a_4} \dots \lambda_{a_4}$$

Lee, Quigg, Thacker; PRD16, Vol.5 (1977)

$$(\ldots, |\Phi_i\rangle, \ldots) \equiv \left(\frac{1}{\sqrt{2!}} |\phi_1\phi_1\rangle, \ldots, \frac{1}{\sqrt{2!}} |\phi_N\phi_N\rangle, |\phi_1\phi_2\rangle, \ldots, |\phi_{N-1}\phi_N\rangle\right)$$

$$|\Phi_{i}\rangle \qquad |\Phi_{j}\rangle \quad \Re\{a_{ij}^{(0)}\} < \frac{1}{2} , \ a_{ij}^{(0)} = \frac{\langle \Phi_{i}| i\mathbf{T}^{(0)} |\Phi_{j}\rangle}{16\pi} \sim \sum_{a_{4}} \dots \lambda_{a_{4}}$$

Lee, Quigg, Thacker; PRD16, Vol.5 (1977)
 In SM, the 2-particle states are w⁺w⁻, hh, zz, hz ⇒ constrains quartic coupling λ, ⇒ m²_h < 700 GeV

$$(\ldots, |\Phi_i\rangle, \ldots) \equiv \left(\frac{1}{\sqrt{2!}} |\phi_1\phi_1\rangle, \ldots, \frac{1}{\sqrt{2!}} |\phi_N\phi_N\rangle, |\phi_1\phi_2\rangle, \ldots, |\phi_{N-1}\phi_N\rangle\right)$$

$$|\Phi_i\rangle \qquad |\Phi_j\rangle \quad \Re\{a_{ij}^{(0)}\} < \frac{1}{2} , \ a_{ij}^{(0)} = \frac{\langle \Phi_i | i\mathbf{T}^{(0)} | \Phi_j \rangle}{16\pi} \sim \sum_{a_4} \dots \lambda_{a_4}$$

Lee, Quigg, Thacker; PRD16, Vol.5 (1977)

■ In SM, the **2-particle** states are w^+w^- , hh, zz, hz

 \Rightarrow constrains quartic coupling λ , \Rightarrow m²_h < 700 GeV

■ In BSM \Rightarrow bounds on combinations of quartic λ_{a_4}

$$(\ldots, |\Phi_i\rangle, \ldots) \equiv \left(\frac{1}{\sqrt{2!}} |\phi_1\phi_1\rangle, \ldots, \frac{1}{\sqrt{2!}} |\phi_N\phi_N\rangle, |\phi_1\phi_2\rangle, \ldots, |\phi_{N-1}\phi_N\rangle\right)$$

$$|\Phi_{i}\rangle \qquad |\Phi_{j}\rangle \quad \Re\{a_{ij}^{(0)}\} < \frac{1}{2} , \ a_{ij}^{(0)} = \frac{\langle \Phi_{i}| i\mathbf{T}^{(0)} |\Phi_{j}\rangle}{16\pi} \sim \sum_{a_{4}} \dots \lambda_{a_{4}}$$

Lee, Quigg, Thacker; PRD16, Vol.5 (1977)

■ In SM, the **2-particle** states are w^+w^- , hh, zz, hz

 \Rightarrow constrains quartic coupling λ , \Rightarrow m²_h < 700 GeV

■ In BSM \Rightarrow bounds on combinations of quartic λ_{a_4}

Reduces to finding eigenvalues of $a_{ii}^{(0)}$ numerically \Rightarrow fast!

Template functions – Flexibility!

Boundedness from below (last checks)

 \rightarrow Some closed forms.

To Do: Generic routines? I. Ivanov arXiv:1004.1799

■ Global Minimum (last checks) → Some closed forms. To Do: Generic routines (recent tool vevacious.hepforge.org)

User Analysis routine

bool CheckStability(LambdaRef & L); bool CheckGlobal(PhiRef & Phi,LambdaRef & bool UserAnalysis(PhiRef & Phi,LambdaRef

Template functions – Flexibility!

Boundedness from below (last checks)

 \rightarrow Some closed forms.

To Do: Generic routines? I. Ivanov arXiv:1004.1799

■ Global Minimum (last checks) → Some closed forms. To Do: Generic routines (recent tool vevacious.hepforge.org)

User Analysis routine

Also possible:

bool CheckStability(LambdaRef & L); bool CheckGlobal(PhiRef & Phi,LambdaRef & bool UserAnalysis(PhiRef & Phi,LambdaRef

User defined mixing

 \rightarrow Useful for special limits (Ex: decoupling)

 \rightarrow Parametric form & can depend on v_i

void MyInternalMixing(const PhiParamVec & PhiPar,const PhiVec & P

User relations among masses and couplings $\{m_i^2, \lambda_a\}$

 \rightarrow Parametric form & can depend on $\{v_i, M_{ij}\}$

void MyCoupMassRelations(const PhiParamVec & PhiPar,const PhiVe

ScannerS: A tool to constrain the parameter space Overview of the tool

Workflow

2 Strategy, modules & interfaces The internal modules The external interfaces

Overview of the tool

2HDM/MSSM external libraries

2HDM/MSSM external libraries

Superiso: http://superiso.in2p3.fr

- Computes flavour physics observables ($b \rightarrow s\gamma$, $g_{\mu} 2$, etc...) affected by new physics loop contributions.
- Complementary to direct search channels!
- <u>C-Functions</u> called directly in <u>ScannerS</u>.

CreateInputFileSuperiso2HDM(mHlight,mHheavy,mA,mHcharged,alpha,tanbeta,Ty
//Example of na observable calculated with superiso
cout<< "bsgamma="<<bsgamma_calculator(superisofile)<<endl;</pre>

2HDM/MSSM external libraries

Superiso: http://superiso.in2p3.fr

- Computes flavour physics observables ($b \rightarrow s\gamma$, $g_{\mu} 2$, etc...) affected by new physics loop contributions.
- Complementary to direct search channels!
- <u>C-Functions</u> called directly in <u>ScannerS</u>.

CreateInputFileSuperiso2HDM(mHlight,mHheavy,mA,mHcharged,alpha,tanbeta,Ty
//Example of na observable calculated with superiso
cout<< "bsgamma="<<bsgamma_calculator(superisofile)<<endl;</pre>

SuShi: http://sushi.hepforge.org/

- Computes Higgs prod. cross-sections NNLO in $gg \& b\bar{b}$
- Called directly in ScannerS through a "Wrapper" function.

CreateInputFileSuShi2HDM(Hparticle,pp_ppbar,order,CM_energy,mHlight, mHhe double xsecggh_out,errxsecggh_out,xsecbbh_out; sushixsection (order,xsecggh out,errxsecggh out,xsecbbh out);

Micromegas interface involves:

- Create newProject in MicrOmegas & LanHep model files
- Drop ScannerS inside project directory
- Turn on MicrOmegas in ScannerS makefile & ./make See R. Coimbra talk for singlet model case

Micromegas interface involves:

- Create newProject in MicrOmegas & LanHep model files
- Drop ScannerS inside project directory
- Turn on MicrOmegas in ScannerS makefile & ./make See R. Coimbra talk for singlet model case

Collider data:

- HiggsBounds/HiggsSignals:
 - \rightarrow Initialized/called through "Wrapper" header! (under test)
 - \rightarrow Needs $M_{H_i}^2$, $\Gamma_{Tot}(H_i)$, $BR(H_i \rightarrow ...)$, $\frac{\sigma_{BSM}(Prod(H_i))}{\sigma_{ref}(Prod(H_i))}$

 \rightarrow Gives exclusion 95% C.L. / p-value of null hipothesis

Internal Tables: LEP, LHC combined 7 and 8 TeV + VBF See R. Coimbra talk for singlet model case

Micromegas interface involves:

- Create newProject in MicrOmegas & LanHep model files
- Drop ScannerS inside project directory
- Turn on MicrOmegas in ScannerS makefile & ./make See R. Coimbra talk for singlet model case

Collider data:

- HiggsBounds/HiggsSignals:
 - \rightarrow Initialized/called through "Wrapper" header! (under test)
 - \rightarrow Needs $M_{H_i}^2$, $\Gamma_{Tot}(H_i)$, $BR(H_i \rightarrow ...)$, $\frac{\sigma_{BSM}(Prod(H_i))}{\sigma_{ref}(Prod(H_i))}$

 \rightarrow Gives exclusion 95% C.L. / p-value of null hipothesis

Internal Tables: LEP, LHC combined 7 and 8 TeV + VBF See R. Coimbra talk for singlet model case

Micromegas interface involves:

- Create newProject in MicrOmegas & LanHep model files
- Drop ScannerS inside project directory
- Turn on MicrOmegas in ScannerS makefile & ./make See R. Coimbra talk for singlet model case

Collider data:

- HiggsBounds/HiggsSignals:
 - \rightarrow Initialized/called through "Wrapper" header! (under test)
 - \rightarrow Needs $M_{H_i}^2$, $\Gamma_{Tot}(H_i)$, $BR(H_i \rightarrow ...)$, $\frac{\sigma_{BSM}(Prod(H_i))}{\sigma_{ref}(Prod(H_i))}$

 \rightarrow Gives exclusion 95% C.L. / p-value of null hipothesis

Internal Tables: LEP, LHC combined 7 and 8 TeV + VBF See R. Coimbra talk for singlet model case

Developing: EWPO (N-Singlets already) & RGE stability module
Conclusions

- 1 Scalar extensions, common addressing BSM problems
- 2 Tool development crucial to interact with experiments & identify candidate models
- 3 We are developing a scanning tool for the **Higgs** including:
 - Local minimum generation, with symmetry detection
 - Tree level unitarity checking routines
 - Implementation of various Interfaces & flexible structure

Conclusions

- 1 Scalar extensions, common addressing BSM problems
- 2 Tool development crucial to interact with experiments & identify candidate models
- 3 We are developing a scanning tool for the Higgs including:
 - Local minimum generation, with symmetry detection
 - Tree level unitarity checking routines
 - Implementation of various Interfaces & flexible structure

THANK YOU!

BACKUP

Questions:

- Which independent parameters?
- How to detect symmetries in the mixing matrix?

Questions:

- Which independent parameters?
- How to detect symmetries in the mixing matrix?

Strategy:

- 1st Generate VEVs ⇔ Choose symmetry breaking/phase.
- Trade off couplings λ_a for eigenstate properties m_i^2 , M_{ij} .
- Linear algebra tasks first (solve local min. conds.)
- Leave masses/mixings independent:
 - Good (local) minimum!
 - Control of ranges scanned over for physical mass.
- **Expensive tasks last or in** UserAnalysis.

Questions:

- Which independent parameters?
- How to detect symmetries in the mixing matrix?

Strategy:

- 1st Generate VEVs ⇔ Choose symmetry breaking/phase.
- Trade off couplings λ_a for eigenstate properties m_i^2 , M_{ij} .
- Linear algebra tasks first (solve local min. conds.)
- Leave masses/mixings independent:
 - <u>Good</u> (local) minimum!
 - Control of ranges scanned over for physical mass.

■ Expensive tasks last or in UserAnalysis.

Questions:

- Which independent parameters?
- How to detect symmetries in the mixing matrix?

Strategy:

- 1st Generate VEVs ⇔ Choose symmetry breaking/phase.
- Trade off couplings λ_a for eigenstate properties m_i^2 , M_{ij} .
- Linear algebra tasks first (solve local min. conds.)
- Leave masses/mixings independent:
 - <u>Good</u> (local) minimum!
 - Control of ranges scanned over for physical mass.
- Expensive tasks last or in UserAnalysis.

Under development

Variation of Electroweak Precision Observables:

Under development

Variation of Electroweak Precision Observables:

Barger et al. PRD77,035005 (2008) H_{i} H_{i} For N-Singlets $\Delta S, \Delta T, \Delta U$ 95% C.L. consistent ellipsoid with EW fits.

Global Stability:

- Root finding for a system of N-equations.
- Have been investigating polynomial homotopy continuation method (recently 1 dedicated package appeared – vevacious) & Monte Carlo.

 H_i

Under development

Variation of Electroweak Precision Observables:

Barger et al. PRD77,035005 (2008) μ_i μ_i For N-Singlets $\Delta S, \Delta T, \Delta U$ 95% C.L. consistent ellipsoid with EW fits.

Global Stability:

- Root finding for a system of N-equations.
- Have been investigating polynomial homotopy continuation method (recently 1 dedicated package appeared – vevacious) & Monte Carlo.

RGE Stability \rightarrow Module under development!

Purpose - To determine whether multi-Higgs model is ...

- HiggsBounds → excluded at 95% C.L. from non-observation of new scalars from LEP/Tevatron/LHC.
- $\blacksquare HiggsSignals \rightarrow \textbf{consistent with observed scalar states.}$

Purpose - To determine whether multi-Higgs model is ...

- HiggsBounds → excluded at 95% C.L. from non-observation of new scalars from LEP/Tevatron/LHC.
- $\blacksquare HiggsSignals \rightarrow \textbf{consistent with observed scalar states.}$

How it works:

- Specify spectrum of scalars (#neutral, #charged, CP)
- Provide $M_{H_i}^2$, $\Gamma_{Tot}(H_i)$, $BR(H_i \rightarrow ...)$, $\frac{\sigma_{BSM}(Prod(H_i))}{\sigma_{ref}(Prod(H_i))}$ OR effective couplings.
- HiggsBounds → Get exclusion 95% C.L. or not
- HiggsSignals \rightarrow Get p-value (for χ^2) of null hipothesis

Purpose - To determine whether multi-Higgs model is ...

- HiggsBounds → excluded at 95% C.L. from non-observation of new scalars from LEP/Tevatron/LHC.
- $\blacksquare HiggsSignals \rightarrow consistent with observed scalar states.$

How it works:

- Specify spectrum of scalars (#neutral, #charged, CP)
- Provide $M_{H_i}^2$, $\Gamma_{Tot}(H_i)$, $BR(H_i \rightarrow ...)$, $\frac{\sigma_{BSM}(Prod(H_i))}{\sigma_{ref}(Prod(H_i))}$ OR effective couplings.
- HiggsBounds → Get exclusion 95% C.L. or not
- HiggsSignals \rightarrow Get p-value (for χ^2) of null hipothesis

See R. Coimbra talk for singlet model case (internal tables LEP, LHC)

Purpose - To determine whether multi-Higgs model is ...

- HiggsBounds → excluded at 95% C.L. from non-observation of new scalars from LEP/Tevatron/LHC.
- $\blacksquare HiggsSignals \rightarrow \textbf{consistent with observed scalar states.}$

How it works:

- Specify spectrum of scalars (#neutral, #charged, CP)
- Provide $M_{H_i}^2$, $\Gamma_{Tot}(H_i)$, $BR(H_i \rightarrow ...)$, $\frac{\sigma_{BSM}(Prod(H_i))}{\sigma_{ref}(Prod(H_i))}$ OR effective couplings.
- HiggsBounds → Get exclusion 95% C.L. or not
- HiggsSignals \rightarrow Get p-value (for χ^2) of null hipothesis

See R. Coimbra talk for singlet model case (internal tables LEP, LHC)

Directly initialized/called through "Wrapper" functions!

Dark matter cases \Rightarrow survive cosmological evol. after freezout. Implemented micrOMEGAS interface \Rightarrow present relic density Involves:

- Creating LanHep model file
- Link and compile micrOMEGAS routines with ScannerS

Dark matter cases \Rightarrow survive cosmological evol. after freezout. Implemented micrOMEGAS interface \Rightarrow present relic density Involves:

- Creating LanHep model file
- Link and compile micrOMEGAS routines with ScannerS

Physical idea: (see also singlet model – Rita's talk)

- Only 1 dark χ out of equilibrium
- χ non-relativistic (CDM)
- relic number density n_{χ} governed by the Boltzmann eq.

$$\frac{dn_{\chi}}{dt} + 3Hn_{\chi} = -\left\langle \sigma_{A} | v | \right\rangle \left(n_{\chi}^{2} - \left(n_{\chi}^{EQ} \right)^{2} \right)$$

Dark matter cases \Rightarrow survive cosmological evol. after freezout. Implemented micrOMEGAS interface \Rightarrow present relic density Involves:

- Creating LanHep model file
- Link and compile micrOMEGAS routines with ScannerS

Physical idea: (see also singlet model – Rita's talk)

- Only 1 dark χ out of equilibrium
- χ non-relativistic (CDM)
- relic number density n_{χ} governed by the Boltzmann eq.

$$\frac{dn_{\chi}}{dt} + 3Hn_{\chi} = -\left\langle \sigma_{A} | v | \right\rangle \left(n_{\chi}^{2} - \left(n_{\chi}^{EQ} \right)^{2} \right)$$

Dark matter cases \Rightarrow survive cosmological evol. after freezout. Implemented micrOMEGAS interface \Rightarrow present relic density Involves:

- Creating LanHep model file
- Link and compile micrOMEGAS routines with ScannerS

Physical idea: (see also singlet model – Rita's talk)

- Only 1 dark χ out of equilibrium
- χ non-relativistic (CDM)

relic number density n_{χ} governed by the Boltzmann eq.

$$\frac{dn_{\chi}}{dt} + 3H n_{\chi} = -\left\langle \sigma_{\mathcal{A}} | \boldsymbol{v} | \right\rangle \left(n_{\chi}^{2} - \left(n_{\chi}^{\mathsf{EQ}} \right)^{2} \right)$$

Dark matter cases \Rightarrow survive cosmological evol. after freezout. Implemented micrOMEGAS interface \Rightarrow present relic density Involves:

- Creating LanHep model file
- Link and compile micrOMEGAS routines with ScannerS

Physical idea: (see also singlet model – Rita's talk)

- Only 1 dark χ out of equilibrium
- χ non-relativistic (CDM)
- relic number density n_{χ} governed by the Boltzmann eq.

$$\frac{dn_{\chi}}{dt} + 3H n_{\chi} = -\left\langle \sigma_{\mathcal{A}} | \boldsymbol{v} | \right\rangle \left(n_{\chi}^{2} - \left(n_{\chi}^{\mathsf{EQ}} \right)^{2} \right)$$

<u>We apply the WMAP $\Omega_{cdm}h^2 = 0.112 \pm 0.006$ as upper limit.</u> Also, direct detection bounds χ /nucleon scattering Xenon100.

Electroweak precision observables

Example: Variation of Electroweak Precision Observables:

Have implemented 95% C.L. consistent ellipsoid with EW fits.

Electroweak precision observables

Example: Variation of Electroweak Precision Observables:

Have implemented 95% C.L. consistent ellipsoid with EW fits.

Electroweak precision observables

Example: Variation of Electroweak Precision Observables:

Have implemented 95% C.L. consistent ellipsoid with EW fits.

The standard strategy is to define signal strength

$$\mu_{i} = \frac{\sigma_{\text{New}}(H_{i})\text{Br}_{\text{New}}(H_{i} \to X_{\text{SM}})}{\sigma_{\text{SM}}(H_{i})\text{Br}_{\text{SM}}(H_{i} \to X_{\text{SM}})}$$

= $M_{ih}^{2} \times \frac{M_{ih}^{2}\Gamma(H_{i} \to SM)}{M_{ih}^{2}\Gamma(H_{i} \to SM) + \sum \Gamma(H_{i} \to newscalars)}$

@ LEP we apply the 95% C.L. bounds HZZ coupling on

$$\xi^2 \equiv \mu_i \mathrm{Br}_{\mathrm{SM}} \left(H_i \to ZZ \right)$$

@ LHC we fix one Higgs with mass $m_h = 125$ GeV while allowing for a signal strength $\mu_h = 1.1 \pm 0.4$

The standard strategy is to define signal strength

$$\begin{split} \mu_{i} &= \frac{\sigma_{\text{New}}(H_{i})\text{Br}_{\text{New}}\left(H_{i} \rightarrow X_{\text{SM}}\right)}{\sigma_{\text{SM}}(H_{i})\text{Br}_{\text{SM}}\left(H_{i} \rightarrow X_{\text{SM}}\right)} \\ &= M_{ih}^{2} \times \frac{M_{ih}^{2}\Gamma(H_{i} \rightarrow SM)}{M_{ih}^{2}\Gamma(H_{i} \rightarrow SM) + \sum \Gamma(H_{i} \rightarrow newscalars)} \end{split}$$

@ LEP we apply the 95% C.L. bounds HZZ coupling on

$$\xi^2 \equiv \mu_i \mathrm{Br}_{\mathrm{SM}} \left(H_i \to ZZ \right)$$

@ LHC we fix one Higgs with mass $m_h = 125$ GeV while allowing for a signal strength $\mu_h = 1.1 \pm 0.4$

The standard strategy is to define signal strength

$$\begin{split} \mu_{i} &= \frac{\sigma_{\text{New}}(H_{i})\text{Br}_{\text{New}}\left(H_{i} \rightarrow X_{\text{SM}}\right)}{\sigma_{\text{SM}}(H_{i})\text{Br}_{\text{SM}}\left(H_{i} \rightarrow X_{\text{SM}}\right)} \\ &= M_{ih}^{2} \times \frac{M_{ih}^{2}\Gamma(H_{i} \rightarrow SM)}{M_{ih}^{2}\Gamma(H_{i} \rightarrow SM) + \sum \Gamma(H_{i} \rightarrow newscalars)} \end{split}$$

@ LEP we apply the 95% C.L. bounds HZZ coupling on

$$\xi^2 \equiv \mu_i \mathrm{Br}_{\mathrm{SM}} \left(H_i \to ZZ \right)$$

@ LHC we fix one Higgs with mass $m_h = 125$ GeV while allowing for a signal strength $\mu_h = 1.1 \pm 0.4$

Other mixing scalars \rightarrow apply <u>95% C.L. combined ATLAS</u> upper limit on μ_i .

The Standard Model – Interactions

Look at radiative corrections to Higgs mass:

Look at radiative corrections to Higgs mass:

Higgs mass runs from high scale:

$$\delta m_h^2 = \left(|\lambda_f|^2 - \frac{1}{2}\lambda \right) \frac{\Lambda_{\rm cutoff}^2}{8\pi^2} + \dots$$

Look at radiative corrections to Higgs mass:

Higgs mass runs from high scale:

$$\delta m_h^2 = \left(|\lambda_f|^2 - \frac{1}{2}\lambda \right) \frac{\Lambda_{\rm cutoff}^2}{8\pi^2} + \dots$$

If $\Lambda_{cutoff} \sim M_4 \sim 10^{16} \text{ TeV} \Rightarrow$ fine tuning of $\sim 10^{-16}$

1 Arrange cancellation of quadratic divergences.

 \Rightarrow New particles: SUSY, Little Higgs, etc...

1 Arrange cancellation of quadratic divergences.

 \Rightarrow New particles: SUSY, Little Higgs, etc...

2 Change the running to exponential.

 \Rightarrow Strong dynamics: the Higgs is a pion field of a new strongly coupled sector.

1 Arrange cancellation of quadratic divergences.

 \Rightarrow New particles: SUSY, Little Higgs, etc...

2 Change the running to exponential.

 \Rightarrow Strong dynamics: the Higgs is a pion field of a new strongly coupled sector.

3 Assume the fundamental Planck scale is 1 TeV.

 \Rightarrow Extra dimensions.

1 Arrange cancellation of quadratic divergences.

 \Rightarrow New particles: SUSY, Little Higgs, etc...

2 Change the running to exponential.

 \Rightarrow Strong dynamics: the Higgs is a pion field of a new strongly coupled sector.

3 Assume the fundamental Planck scale is 1 TeV.

 \Rightarrow Extra dimensions.

