Higgs bosons in a model of spontaneous R-parity violation

Harri Waltari

Department of Physics, University of Helsinki & Helsinki Institute of Physics

Scalars 2013, Warsaw, 15.9.2013

Outline

- Motivating spontaneous R-parity violation
- Field content and previous motivation to study the model
- Properties of the scalar sector: masses, couplings and mixing
- Conclusions

This talk is based on the work (in preparation) of Katri Huitu and HW. This work was partially supported by the Academy of Finland (project 137960).

∃ ► ▲ ∃ ► ▲ ∃ = ● ○ ○ ○

Where is supersymmetry hiding?

The Standard Model is excellent, but...

- $\bullet\,$ neutrinos are massless in SM \Rightarrow no neutrino oscillation
- the Higgs boson mass is not protected against quantum corrections
- there are no candidates for cold dark matter

Where is supersymmetry hiding?

The Standard Model is excellent, but...

- $\bullet\,$ neutrinos are massless in SM \Rightarrow no neutrino oscillation
- the Higgs boson mass is not protected against quantum corrections
- there are no candidates for cold dark matter

Supersymmetric models can solve these problems, but...

- superpartners are still unobserved, though they were expected to be within the reach of 7-8 TeV phase of LHC
- the observed Higgs mass is close to the upper limit or above it for all minimal supersymmetric models
- the Higgs mass needs large A-terms and/or heavy stops

★ ∃ ▶ ★ ∃ ▶ ∃ ∃ • 𝔅 𝔅

Possible solution: spontaneous R-parity violation

- R-parity is an additional assumption in supersymmetric models to avoid baryon and lepton number violating operators
- The R-parity violating superpotential can be written as W_{RPV} = λ_{ijk}L_iL_jE_k + λ'_{ijk}L_iQ_jD_k + λ''_{ijk}U_iD_jD_k + μ_iL_iH_u

∃ ► ▲ ∃ ► ∃ =

Possible solution: spontaneous R-parity violation

- R-parity is an additional assumption in supersymmetric models to avoid baryon and lepton number violating operators
- The R-parity violating superpotential can be written as $W_{RPV} = \lambda_{ijk}L_iL_jE_k + \lambda'_{ijk}L_iQ_jD_k + \lambda''_{ijk}U_iD_jD_k + \mu_iL_iH_u$
- R-parity can be broken spontaneously by a non-zero vacuum expectation value of a sneutrino field

▲ ∃ ► ∃ = √Q ∩

Possible solution: spontaneous R-parity violation

- R-parity is an additional assumption in supersymmetric models to avoid baryon and lepton number violating operators
- The R-parity violating superpotential can be written as $W_{RPV} = \lambda_{ijk}L_iL_jE_k + \lambda'_{ijk}L_iQ_jD_k + \lambda''_{ijk}U_iD_jD_k + \mu_iL_iH_u$
- R-parity can be broken spontaneously by a non-zero vacuum expectation value of a sneutrino field
- Spontaneous R-parity violation (RPV) breaks only lepton number conservation and thus proton is automatically stable
- Spontaneous RPV is more predictive: *QLD* and *LLE*-type operators are correlated

A = A = A = A = A = A

Possible solution: spontaneous R-parity violation

- R-parity is an additional assumption in supersymmetric models to avoid baryon and lepton number violating operators
- The R-parity violating superpotential can be written as $W_{RPV} = \lambda_{ijk}L_iL_jE_k + \lambda'_{ijk}L_iQ_jD_k + \lambda''_{ijk}U_iD_jD_k + \mu_iL_iH_u$
- R-parity can be broken spontaneously by a non-zero vacuum expectation value of a sneutrino field
- Spontaneous R-parity violation (RPV) breaks only lepton number conservation and thus proton is automatically stable
- Spontaneous RPV is more predictive: *QLD-* and *LLE-*type operators are correlated
- $\bullet~{\rm Good~thing:}~{\rm LSP}$ is unstable $\Rightarrow~{\rm SUSY}$ searches relying on MET do not hold
- Problem: LSP is unstable \Rightarrow No cold dark matter candidates

A = A = A = A = A = A

The superpotential

The model was first introduced by Kitano and Oda (PRD61, 113001). We add to the MSSM field content a Higgs singlet Φ and three singlet neutrinos N_i .

The superpotential

 $W = W'_{MSSM} + h^{\nu}_{ij}(L_i \cdot H_u)N_j + \lambda_H(H_u \cdot H_d)\Phi + \lambda_{N_i}N_i^2\Phi/2 + \lambda_{\Phi}\Phi^3/6$

• W'_{MSSM} is the MSSM superpotential without the μ -term.

The superpotential

The model was first introduced by Kitano and Oda (PRD61, 113001). We add to the MSSM field content a Higgs singlet Φ and three singlet neutrinos N_i .

The superpotential

 $W = W'_{MSSM} + h^{\nu}_{ij}(L_i \cdot H_u)N_j + \lambda_H(H_u \cdot H_d)\Phi + \lambda_{N_i}N_i^2\Phi/2 + \lambda_{\Phi}\Phi^3/6$

- W'_{MSSM} is the MSSM superpotential without the μ -term.
- The term N²Φ breaks lepton number explicitly ⇒ no spontaneous breaking of a global symmetry ⇒ would-be-majoron gets a mass

A = A = A = A = A = A = A

The superpotential

The model was first introduced by Kitano and Oda (PRD61, 113001). We add to the MSSM field content a Higgs singlet Φ and three singlet neutrinos N_i .

The superpotential

 $W = W'_{MSSM} + h^{\nu}_{ij}(L_i \cdot H_u)N_j + \lambda_H(H_u \cdot H_d)\Phi + \lambda_{N_i}N_i^2\Phi/2 + \lambda_{\Phi}\Phi^3/6$

- W'_{MSSM} is the MSSM superpotential without the μ -term.
- The term N²Φ breaks lepton number explicitly ⇒ no spontaneous breaking of a global symmetry ⇒ would-be-majoron gets a mass
- The domain wall problem due to the breaking of the Z₃ symmetry is similar to NMSSM and can be taken care of

Soft supersymmetry breaking terms

$$\begin{split} \mathcal{L} &= \mathcal{L}'_{MSSM} + m_{N_i}^2 |\tilde{N}_i|^2 + m_{\Phi}^2 |\Phi|^2 + A_{ij}^{\nu} (\tilde{L}_i \cdot H_u) \tilde{N}_j + A_H (H_u \cdot H_d) \Phi + \\ A_{N_i} \tilde{N}_i^2 \Phi / 2 + A_{\Phi} \Phi^3 / 6 + \xi^3 \Phi + \text{h.c.} \end{split}$$

Neutrino mass generation and R-parity violation

- Neutrino masses can be generated by the type-I seesaw with the help of *N* fields
- Neutrino masses can also be generated with the help of neutrino-neutralino mixing
- ullet \Rightarrow Two different mass scales are generated for the neutrino sector

▲ ∃ ▶ ∃ ∃ ♥ ♥ ♥ ♥ ♥ ♥ ♥

Neutrino mass generation and R-parity violation

- Neutrino masses can be generated by the type-I seesaw with the help of *N* fields
- Neutrino masses can also be generated with the help of neutrino-neutralino mixing
- $\bullet\,\Rightarrow\,\mathsf{Two}$ different mass scales are generated for the neutrino sector
- If A-terms exceed the m_h-max limit one of the non-Higgs scalar fields gets a VEV
- In MSSM this leads to a charged vacuum, now we wish to give the VEV to a sneutrino field

A = A = A = A = A = A

Neutrino mass generation and R-parity violation

- Neutrino masses can be generated by the type-I seesaw with the help of *N* fields
- Neutrino masses can also be generated with the help of neutrino-neutralino mixing
- $\bullet\,\Rightarrow\,\mathsf{Two}$ different mass scales are generated for the neutrino sector
- If A-terms exceed the m_h -max limit one of the non-Higgs scalar fields gets a VEV
- In MSSM this leads to a charged vacuum, now we wish to give the VEV to a sneutrino field
- The field with the smallest Yukawa coupling gets the VEV \Rightarrow set h^{ν} small $\Rightarrow \langle \tilde{N} \rangle \neq 0$
- Sneutrino VEVs make the low energy effective theory look like bilinear R-parity violation⇒ only three RPV parameters in the superpotential

Vacuum expectation values

- The tadpole term for Φ always generates $\langle\Phi\rangle\neq 0 \Rightarrow \mu\text{-term}$
- At the same time the Majorana mass term for N is generated

Vacuum expectation values

- The tadpole term for Φ always generates $\langle \Phi \rangle \neq 0 \Rightarrow \mu$ -term
- At the same time the Majorana mass term for N is generated
- If A-terms are large and $h^{
 u}$ is small $\langle ilde{N}
 angle
 eq 0$
- Once EWSB occurs, this also generates $\langle \tilde{\nu} \rangle \neq 0$ but it is suppressed by h^{ν}
- $\langle \tilde{\nu} \rangle$ also constrained by neutrino masses to be around 1 MeV or less

Vacuum expectation values

- The tadpole term for Φ always generates $\langle\Phi\rangle\neq 0 \Rightarrow \mu\text{-term}$
- At the same time the Majorana mass term for N is generated
- If A-terms are large and $h^{
 u}$ is small $\langle ilde{N}
 angle
 eq 0$
- Once EWSB occurs, this also generates $\langle \tilde{\nu} \rangle \neq 0$ but it is suppressed by h^{ν}
- $\langle \tilde{\nu} \rangle$ also constrained by neutrino masses to be around 1 MeV or less
- Since $\langle\tilde{\nu}\rangle$ is small, doublet sneutrinos decouple from the other scalars as do those combinations of singlet sneutrinos that do not have a VEV
- \Rightarrow Concentrate on H_u , H_d , \tilde{N} and Φ

A = A = A = A = A = A

Lightest neutral CP-even scalar — how to get a 125 GeV Higgs?

- Since there are singlets, one might expect that the lightest CP-even scalar would have the same tree-level mass limit as in the NMSSM
- The NMSSM limit is derived by looking at the 2×2 submatrix formed by H_u and H_d $\Rightarrow m_h^2 < m_Z^2 (\cos^2 2\beta + 2\lambda^2 \cos^2 \theta_W/g^2 \sin^2 2\beta)$

▲ ∃ ▶ ∃ ∃ ♥ ♥ ♥ ♥ ♥ ♥ ♥

Lightest neutral CP-even scalar — how to get a 125 GeV Higgs?

- Since there are singlets, one might expect that the lightest CP-even scalar would have the same tree-level mass limit as in the NMSSM
- The NMSSM limit is derived by looking at the 2×2 submatrix formed by H_u and H_d $\Rightarrow m_h^2 < m_Z^2 (\cos^2 2\beta + 2\lambda^2 \cos^2 \theta_W/g^2 \sin^2 2\beta)$
- However it is not possible to saturate this limit in this model, since \tilde{N} cannot be decoupled if R-parity is spontaneously broken

∃ ► ▲ ∃ ► ∃ = √Q ∩

Lightest neutral CP-even scalar — how to get a 125 GeV Higgs?

- Since there are singlets, one might expect that the lightest CP-even scalar would have the same tree-level mass limit as in the NMSSM
- The NMSSM limit is derived by looking at the 2×2 submatrix formed by H_u and H_d $\Rightarrow m_h^2 < m_Z^2 (\cos^2 2\beta + 2\lambda^2 \cos^2 \theta_W/g^2 \sin^2 2\beta)$
- However it is not possible to saturate this limit in this model, since \tilde{N} cannot be decoupled if R-parity is spontaneously broken
- Need to look at the 3×3 submatrix \Rightarrow we get an upper bound $m \le m_Z$ at tree-level as in the MSSM!

Lightest neutral CP-even scalar — how to get a 125 GeV Higgs?

- Since there are singlets, one might expect that the lightest CP-even scalar would have the same tree-level mass limit as in the NMSSM
- The NMSSM limit is derived by looking at the 2×2 submatrix formed by H_u and H_d $\Rightarrow m_h^2 < m_Z^2 (\cos^2 2\beta + 2\lambda^2 \cos^2 \theta_W/g^2 \sin^2 2\beta)$
- However it is not possible to saturate this limit in this model, since \tilde{N} cannot be decoupled if R-parity is spontaneously broken
- Need to look at the 3×3 submatrix \Rightarrow we get an upper bound $m \le m_Z$ at tree-level as in the MSSM!
- Two ways to get the SM-like Higgs mass up to 125 GeV: large *A*-terms (RPV requires them) or a lighter singlet scalar (usually mostly sneutrino)

伺 ト イヨト イヨト ヨヨ つくや

Numerical analysis

- One-loop effective potential with top-stop and bottom-sbottom corrections
- Random scan over all relevant parameters of the Higgs sector
- Check that scalar potential after EWSB and RPV is below the symmetric state
- Require tree-level neutrino mass (0.05–0.5 eV) and SM-like Higgs mass (120–130 GeV) to be within the correct range
- If a lighter scalar is present, require the *hZZ* coupling to be below LEP limits

A = A = A = A = A = A

Numerical analysis

- One-loop effective potential with top-stop and bottom-sbottom corrections
- Random scan over all relevant parameters of the Higgs sector
- Check that scalar potential after EWSB and RPV is below the symmetric state
- Require tree-level neutrino mass (0.05–0.5 eV) and SM-like Higgs mass (120–130 GeV) to be within the correct range
- If a lighter scalar is present, require the *hZZ* coupling to be below LEP limits

\sim		
()		ΔM
\sim	uun	000

Total points	500 000
$\langle H_u \rangle, \langle H_d \rangle, \langle \Phi \rangle, \langle \tilde{N} \rangle \neq 0$ gives a minimum	438 802
Neutrino and Higgs constraints satisfied	14 658

The lightest CP-even scalar mass can reach 126 GeV

Up-type Higgs — blue, down-type Higgs — red, sneutrino — green

SM-like Higgs mass

The SM-like Higgs mass may go up to 132 GeV (blue: SM-like Higgs lightest, red: singlet below 80 GeV, green: between 80–120 GeV)

Higgs-sneutrino mixing

H. Waltari Higgs bosons in a model of spontaneous R-parity violation

三日 のへの

Some remarks

- The observed Higgs mass may be reached in this model
- The SM-like Higgs mass can be higher than in the MSSM
- The same SM-like Higgs mass can be achieved with 500 GeV smaller stop masses than in the MSSM if a lighter mostly singlet state exists
- The highest Higgs masses require Higgs-sneutrino mixing
- LEP limits for *hZZ* coupling below 80 GeV are restrictive to allow the Higgs mass to be lifted too much
- The interesting possibility is a sneutrino-Higgs mixed state between 80 and 120 GeV

Couplings of the SM-like Higgs: bottom vs. top

With SUSY-QCD corrections ($M_{\tilde{g}} = 1.5 \text{ TeV}$)

= 990

Couplings of the SM-like Higgs: bottom vs. top

三日 のへの

Couplings of the SM-like Higgs: W vs. top

H. Waltari Higgs bosons in a model of spontaneous R-parity violation

Branching ratio of $h\to\gamma\gamma$

The branching ratio to two photons may be slightly enhanced

Event rate of $h \rightarrow \gamma \gamma$

The event rate is suppressed if there is large Higgs-sneutrino mixing

Remarks on the couplings

- In any case the majority of points are very close to the SM values
- Couplings to top and W are almost identical compared to SM expectation
- SUSY-QCD corrections for TeV scale SUSY partners may cause deviations in the bottom quark coupling, while Higgs-sneutrino mixing may lead to a universal suppression of couplings
- Small enhancement in the two-photon branching ratio possible, but event rate close to SM

⇒ ↓ ≡ ↓ ≡ ⊨ √Q ∩

The CP-odd neutral scalar sector

- The lightest CP-odd scalar is usually the would-be-majoron, at least if λ_N and v_{Φ} are relatively small
- Since the would-be-majoron gets its mass from the $\lambda_N N^2 \Phi$ -term, it is a mixture of singlets
- The large A-terms tend to make the CP-odd scalars quite heavy
- The CP-odd sector seems to be hard to detect experimentally

Conclusions

- The model seems to be viable in those aspects that we studied
- Spontaneous R-parity violation leads to some interesting effects in the Higgs sector
- ullet The SM-like Higgs boson can have a mass of $\sim 125~{\rm GeV}$
- If there is a lighter, mostly single scalar, we may have quite light stops despite the large Higgs mass
- The couplings are generally SM-like though deviations due to SUSY-QCD corrections or Higgs-sneutrino mixing are possible

⇒ ↓ = ↓ = = √QQ

Parameter ranges

Parameter	Minimum value	Maximum value
aneta	1	30
λ_N	0.1	0.8
λ_{Φ}	0.05	0.25
λ_H	-0.1	0.4
$h_ u$	10 ⁻⁸	10^{-6}
A	-6000	-1000
ξ	-3500	-500
V_{Φ}	600	2500
VN	50	4000
$V_{ u}$	10 ⁻⁶	$5 \cdot 10^{-4}$
$m_{ ilde{Q}_{I}, ilde{t}_{R}, ilde{b}_{R}}$	700	1700

A 10

< E ▶ < E ▶ E = のQ @

Avoiding flavor constraints

Many of the constraints of flavor physics are satisfied since they need the mixing of the lepton and Higgs doublets, which is very small ($\propto h^{\nu}$). For instance, the tree-level process $\mu \rightarrow 3e$, whose branching ratio has the experimental limit of 10^{-12} proceeds dominantly via the following diagram:

ELE DOC

What about the light sneutrino?

- If the light particle is a pure singlet sneutrino, it will be very hard to produce; it doesn't couple to quarks or gauge bosons and leptonic couplings are suppressed by h^{ν}
- If there is a substantial component of doublet Higgs, usual Higgs production mechanisms become available (with suppression)

ELE SQC

What about the light sneutrino?

- If the light particle is a pure singlet sneutrino, it will be very hard to produce; it doesn't couple to quarks or gauge bosons and leptonic couplings are suppressed by h^{ν}
- If there is a substantial component of doublet Higgs, usual Higgs production mechanisms become available (with suppression)
- The only unsuppressed (by h^{ν}) kinematically available decay mode is $\tilde{N} \rightarrow \gamma \gamma$, which proceeds via a charged Higgs loop; if the charged Higgs is heavy, this mode will also be suppressed
- Hence the sneutrino may look like a usual Higgs boson with very much suppressed couplings to all particles but with an enhanced $\gamma\gamma$ branching ratio

> < = > < = > = = = < < < <