Gravitino dark matter with constraints from Higgs boson mass and sneutrino decays

Sebastian Trojanowski

NCBJ Warsaw/Świerk

September 15, 2013

L. Roszkowski, ST, K. Turzyński, K. Jedamzik JHEP 1303 (2013) 013

"Gravitino dark matter with constraints from Higgs boson mass and sneutrino decays'

Well motivated Particle Dark Matter

- vast ranges of interactions and masses
- different production mechanisms in the early Universe
- need to go beyond the Standard Model
- WIMP candidates testable in the near future
- axino/gravitino EWIMPs/superWIMPs not directly testable, but some hints from LHC may be possible

Gravitino \tilde{G} : superpartner of graviton, Majorana spin $\frac{3}{2}$ fermion extremely weakly interacting (EWIMP) -

its interactions are suppressed by $M_{\rm Pl} \sim 10^{18} {
m GeV}$

Various energy scales in gravitino phenomenology

Non-Thermal Production late decays of next-to-LSP

Thermal production

scatterings of superparticles \prime in the thermal plasma

$$\Omega_{\tilde{\boldsymbol{G}}}^{\mathrm{TP}}\boldsymbol{h}^2 \simeq \left(\frac{\boldsymbol{\mathsf{T}}_{\boldsymbol{\mathsf{R}}}}{10^8 \mathrm{GeV}}\right) \left(\frac{1 \mathrm{GeV}}{\boldsymbol{\mathsf{m}}_{\tilde{\boldsymbol{\mathsf{G}}}}}\right) \sum_{\boldsymbol{\mathsf{r}}=1}^3 \gamma_{\boldsymbol{\mathsf{r}}}(\boldsymbol{\mathsf{T}}_{\boldsymbol{\mathsf{R}}}) \left(\frac{\boldsymbol{\mathsf{M}}_{\boldsymbol{\mathsf{r}}}}{900 \mathrm{GeV}}\right)^2$$

where $\gamma_1 = 0.2$, $\gamma_2 = 0.5$, $\gamma_3 = 0.5$ at $T_R = 10^9$ GeV.

M. Bolz, A. Brandenburg, W. Buchmuller; hep-ph/0012052

For low $\Omega_{\tilde{\nu}} \mathbf{h}^2 \mathbf{TP}$ is dominant.

J. Pradler, F. D. Steffen; hep-ph/0608344

Gravitino relic density:

 $\Omega_{\tilde{c}}^{\rm NTP} \mathbf{h}^2 = \frac{\mathbf{m}_{\tilde{G}}}{\mathbf{m}_{\tilde{c}}} \Omega_{\tilde{\nu}} \mathbf{h}^2 \cdot \mathbf{h}^2$

V. S. Rychkov, A. Strumia; hep-ph/0701104

$$0.112 = \Omega_{\tilde{G}}^{total} h^2 \simeq \Omega_{\tilde{G}}^{\rm TP} h^2 \quad \Rightarrow \quad T_R$$

 T_R is maximized for low gaugino masses (M_r) and large $m_{\tilde{G}}$.

Why not sneutrino DM?

- for lower $m_{\tilde{\nu}}$ too low relic density
- for higher $m_{\tilde{\nu}}$ excluded by DM direct detection experiments e.g. Heidelberg-Moscow exp.

T. Falk, K. A. Olive, M. Srednicki; hep-ph/9409270

Why sneutrino next-to-LSP with gravitino DM?

• $\tilde{\nu}$ low yield at freezeout \rightarrow better than bino \tilde{B} $\Omega_{\tilde{G}}h^2$ – bigger contribution from thermal production $\Rightarrow T_R \nearrow$ thermal leptogenesis $T_R > \sim 2 \times 10^9$ (2 × 10⁸) GeV G. F. Giudice, A. Notari, M. Raidal, A. Riotto, A. Strumia; hep-ph/0310123 (S. Davidson, E. Nardi, Y. Nir: hep-ph/0802.2962)

• dominant sneutrino to gravitino decay $\tilde{\nu} \rightarrow \nu \tilde{G}$ \rightarrow better than stau $\tilde{\tau}$

Weak BBN bounds (mainly from subdominant 3- an 4-body decays)

Higgs mass
$$\sim$$
 126 GeV \Rightarrow max $T_R \searrow$

"Gravitino dark matter with constraints from Higgs boson mass and sneutrino decays"

Considered constraints:

- $2.3 \times 10^{-5} \le D/H \le 4 \times 10^{-5}$
- ${}^{3}\text{He}/\text{D} < 1.4$
- $0.24 \le Y_p \le 0.260$
- ${}^{6}\text{Li}/{}^{7}\text{Li} \le 0.1 \text{ or } 0.66$
- K. Jedamzik, M. Lemoine, G. Moultaka; hep-ph/0508141
 Large Scale Structures (LSS) formation
- CMBR distortions
 W. Hu, J. Silk; Phys. Rev. Lett. 70 (1993) 2661
 (limit on chemical potential)
 http://www.slac.stanford.edu/xorg/hfag/rare/2012/radll/index.html
- $2.82 imes 10^{-4} \le {\sf BR}(b o s\gamma) \le 4.04 imes 10^{-4}$
- $5 imes 10^{-5} \leq {\sf BR}(B_u o au
 u_ au) \leq 2.82 imes 10^{-4}$ Heag; i
- $12.92 \text{ps}^{-1} \le \Delta M_{B_s} \le 22.52 \text{ps}^{-1}$
- BR $(B_s \to \mu^+ \mu^-) = (3.2 \pm 1.2 \pm 0.3) \times 10^{-9}$
- $m_h = (125.8 \pm 0.6 \pm 2) \text{ GeV}$
- squark masses above LHC limits

K. Jedamzik; hep-ph/0604251

HFAG; hep-ex/1207.1158

PDG; Phys. Rev. D86 (2012) 010001

LHCb; hep-ex/1211.2674

CMS-PAS-HIG-12-045

"Gravitino dark matter with constraints from Higgs boson mass and sneutrino decays'

Conclusions:

- Models with gravitino DM are strongly constrained by BBN and struggle to get high reheating temperature T_R
- Taking sneutrino as next-to-LSP improves the situation...
- \bullet ...but, with the light Higgs boson of mass \sim 126 GeV, this scenario looks disfavoured
- NUHM: lower $m_{\tilde{G}} \Rightarrow$ desired m_h , but too low T_R
- NUHM: higher $m_{\tilde{G}} \Rightarrow \max T_R \nearrow$, but too low m_h