Slim SUSY

J. Lorenzo Diaz Cruz

FCFM-BUAP (Puebla, Mexico) ¹ SCALARS 2013

September 15, 2013

¹Also at CINVESTAV-IPN (DF)

J. Lorenzo Diaz Cruz (BUAP)

Slim SUSY

September 15, 2013

< 口 > < 円 >

- 4 三 + 4 三 +

1 / 61

2 The 125 GeV Higgs signal in the MSSM

3 Slim SUSY - Heavy Higgs spectrum

< 61 b

²Work with E. Arganda and A. Synkman (EJP-2013, PLB-2013) $\rightarrow \langle z \rangle = 0$

J. Lorenzo Diaz Cruz (BUAP)

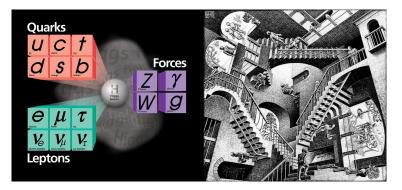
Slim SUS

Septe

September 15, 2013

3 / 61

 $\mathbf{2}$


³Work with E. Arganda and A. Synkman (EJP-2013, PLB=2013) \rightarrow (\equiv) \rightarrow (\equiv)

Slim SUS

4 / 61

Symmetry and Unification

A powerfull method to search for beauty and truth in nature

Could there more symmetries realized in nature?

J. Lorenzo Diaz Cruz (BUAP)

Slim SUSY

5/61

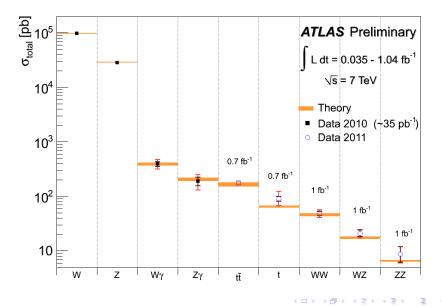
Open problems in the SM

- Hierarchy problem,
- Neutrino masses and flavor problem,
- Strong CP problem,
- Dark Matter,
- BAU
- Cosmological constant (Dark energy),
- SM Parameters and its Structure,

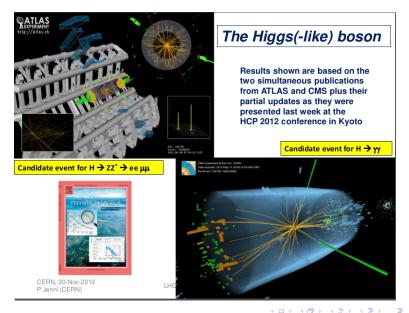
Supersymmetry could be next stage!

A B A A B A

4 A I

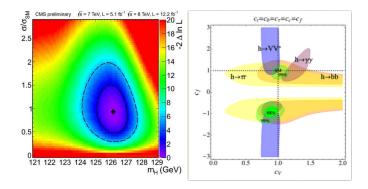

Open problems in the SM and SUSY

- Hierarchy problem (\rightarrow SUSY),
- Unification (\rightarrow SUSY)
- Neutrino masses and flavor problem,
- Strong CP problem,
- Dark Matter (\rightarrow SUSY),
- BAU
- Cosmological constant (Dark energy),
- SM Parameters, Structure and other Aesthetical questions,,


But, how is SUSY realized in nature? We do not know yet...

・ 「「・・・ ・ 」 ・

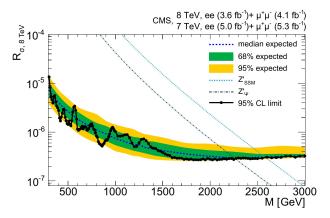
The problem is that LHC is confirming the SM:


The LHC and the Higgs signal

Slim SUSY

New scalar Profile

- Looks like SM CP-even Higgs state: $S = 0, T = \frac{1}{2}, Y = 1$,
- With SM-like Higgs couplings: $hVV, hbb, h\tau\tau, htt/hgg, h\gamma\gamma$ 4


Couplings with light fermions are very difficult to test (e-mu conversion/DM-nucleus scattering).

⁴a) Ellis et al, b) Falkowski et al.

J. Lorenzo Diaz Cruz (BUAP)

Slim SUSY

LHC limits on new Z-prime

September 15, 2013

 61^{11}

Lessons from the LHC

- At current energies SM is being confirmed,
- No signs of new physics, yet,
 Be patient → Nature has to be natural,
- But some are starting to get impatient, \rightarrow Multiverse - Only one light scalar in nature: A finely tunned SM Higgs (as it is Λ_C), \rightarrow Split/Spread/... SUSY

But this may be a bit too radical

Our proposal (Slim SUSY):

Heavy Higgs bosons of the MSSM (H, A, H^{\pm}) have $M \simeq O(EW \text{ Scale})$

(one Scalar has been detected... may be more will come!)

The MSSM

The minimal extension of the SM consistent with SUSY, is based on:

- SM Gauge Group (\rightarrow gauge bosons and gauginos),
- 3 families of fermions and sfermions,
- Two Higgs doublets $(H_u \text{ and } H_d)$,
- Soft-breaking of SUSY (Hidden sector),
- R-parity distinguish SM and their superpartners \rightarrow LSP is stable and DM candidate.

The MSSM particle content

	\mathbf{SM}	Superpartners
SM	W^{\pm}, Z, γ	Wino,Zino, Photino
Bosons	gluon	gluino
	Higgs bosons	Higgsinos
SM	quarks	squarks
Fermions	leptons	sleptons
	neutrinos	sneutrinos

Mixing of gauginos and Higgsinos \rightarrow Charginos (χ_i^{\pm} , i = 1, 2) and Neutralinos (χ_j^0 , j = 1, 4),

Gravitino is also part of the spectrum.

The MSSM Higgs sector

2HDM of type-II (at tree-level) $\rightarrow h^0, H^0, A^0, H^{\pm}$,

- CP-even neutral Higgs bosons h^0, H^0 , at tree-level $m_h < m_Z$,
- CP-odd neutral Higgs A^0 with $m_H^2 = m_A^2 + m_Z^2 \sin^2 2\beta$,
- Charged Higgs H^{\pm} , with $m_{H^+}^2 = m_A^2 + m_W^2$,
- Masses and mixing angles fixed with: m_A and $tan\beta = v_2/v_1$,
- When $m_A \leq \tilde{m}$, Higgs searches uses SM techniques.
- H^0, A^0, H^{\pm} decays into SUSY modes may be allowed, but more constrained,

September 15, 2013 15

The MSSM Higgs mass

Radiative effects of Stop-top loops can make: $m_h > m_Z$; simple one-loop approx.:

$$m_h^2 = [m_Z^2 \cos^2 2\beta + \epsilon \sin^2 \beta] \tag{1}$$

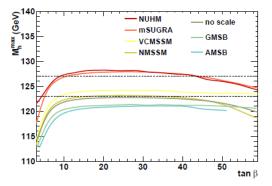
(2)

September 15, 2013

where

$$\epsilon = \frac{3m_t^2}{2\pi^2 \sin^2 \beta} [log(\frac{m_S^2}{m_t^2}) + \frac{X_t^2}{m_S^2}(1 - \frac{X_t^2}{12m_S^2}]$$

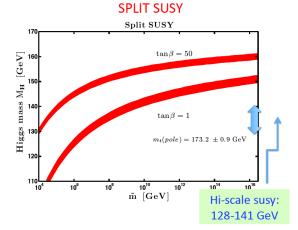
 $X_t = A_t - \mu \cot \beta$, $m_S^2 = m_1 m_2$ Thus, to get $m_h = 125 - 126$ GeV need:


- Large masses for 3rd family squarks, of $m_S = O(\text{TeV})$, or
- Large X_t -terms,
- A milder combination of the above.

The MSSM with $m_h = 125 \text{ GeV}$

Three options for parameter space:

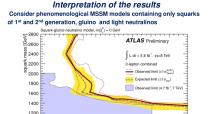
- Look for small corners of the more traditional MSSM \rightarrow Constrained (cMSSM) or phenomenological (pMSSM),
- MSSM with heavy sfermions arising within quasi-natural models \rightarrow More minimal MSSM, Natural SUSY, String based models,...
- Assume Heavy scalars, except for a fine tunned SM-like Higgs \rightarrow Split SUSY, Spread SUSY, High Scale SUSY,...


MSSM Higgs mass (A. Djouadi et al.)

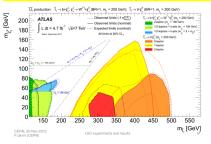
September 15, 2013

18 61

MSSM Higgs mass (Giudice and Strumia)



J. Lorenzo Diaz Cruz (BUAP)


September 15, 2013

19 61

Recent limits on SUSY from LHC

Summary of five dedicated searches for top squark pair production for theoretically preferred models with relatively light 3rd generation squarks

September 15, 2013

61

1000 800 800

1000 1200 1400 1600 1800 2000 2200 2400

Slim SUSY

ATLAS-CONE-2012-0109

gluino mass [GeV]

String-based (Nilles et al)

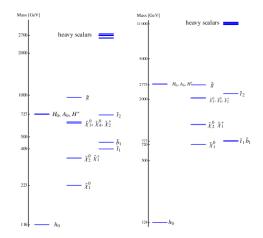
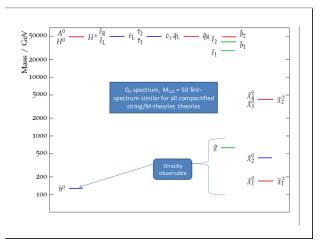


Figure 3: Particle spectra for the benchmark points BP1 (left) and BP2 (right).

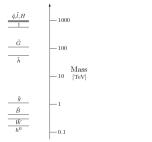

J. Lorenzo Diaz Cruz (BUAP)

Slim SUSY

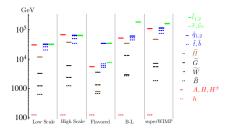
September 15, 2013

21 61

SUSY spectrum (Kane et al.)



J. Lorenzo Diaz Cruz (BUAP)


September 15, 2013

61

Split-Spread (Hall, Nomura, Shirai) /Mini-split spectrum (Kahn,McCullough,Thaler)

Typical spectrum of Spread Supersymmetry with wino LSP.

September 15, 2013

Slim SUSY

Sfermions and Higgs spectrum

- In Split SUSY and its variants, all scalars are assumed to be quite heavy, except for a finely-tunned higgs boson (with $m_h = 125$ GeV),
- Heavy squarks/sleptons offer the possibility to solve SUSY CP and FCNC problems by DECOUPLING,
- But, regarding the flavor problem, Higgs bosons are harmless, and could be much lighter than squarks and sleptons, "all scalars are equal...but some scalars are more equal"
- Heavy Higgs particles at the reach of LHC could be used as a test of natural vs anthropic arguments,

 \rightarrow Our proposal: SLIM SUSY

Slim SUSY- definitions

- O(10) TeV sfermions of 3rd family (to account for $m_h = 125 \text{ GeV}$)
- O(100) TeV sfermions of 1st,2nd family (to solve SUSY CP and Flavor problems,)
- Full Higgs spectrum near EW scale (at the reach of LHC),
- Minimal Chargino/Neutralino sector at EW scale (Wino or Higgsino DM, but not pure bino)
- No colored sparticles at LHC reach (Our prediction),

SUSY breaking and SLIM Spectrum

An effective description of SUSY breaking involves the chiral supermultiplet S, charged under some symmetry (Wells, PeV SUSY).

$$S = s + \sqrt{2}\psi\theta + F_S\theta^2, \qquad (3)$$

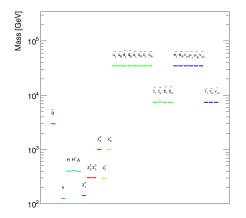
whose nonzero F_S component is the source of supersymmetry breaking. The scalar masses are generated at tree-level by

$$\int d^2\theta d^2\bar{\theta} \, c_i \, \frac{S^{\dagger}S}{M_{\rm Pl}^2} \Phi_i^{\dagger} \Phi_i \to c_i \frac{F_S^{\dagger}F_S}{M_{\rm Pl}^2} \phi_i^* \phi_i \,, \tag{4}$$

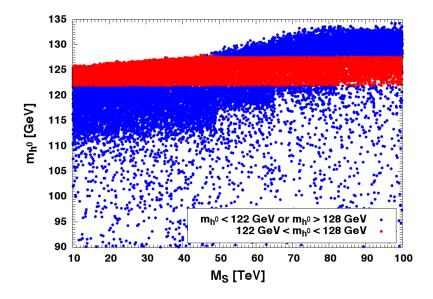
Therefore, one obtains $m_0 \simeq c_i m_{3/2}$ with $m_{3/2}^2 = \langle F_S^{\dagger} F_S \rangle / M_{\text{Pl}}^2$.

Gaugino masses would arise from the anomaly mediation:

$$M_{\lambda_a} = \frac{\beta(g_a)}{g_a} m_{3/2} \,, \tag{5}$$


125 Higgs mass in SLIM SUSY

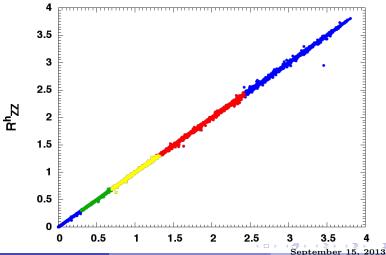
The parameters are varied within the following range, and we only select points that satisfy current direct bounds on SUSY masses.


- $1 < \tan \beta < 60$.
- $-3 \text{ TeV} < M_1, M_2, \mu < 3 \text{ TeV}$
- 1 TeV $< M_3 < 3$ TeV.
- 200 GeV $< m_{A^0} < 600$ GeV.
- 10 TeV $< M_S < 100$ TeV.
- 1 TeV $< m_s < 7.5$ TeV.

Spectrum of SLIM SUSY

In order to obtain SLIM spectrum, for $M_{3/2} \simeq 100$ TeV, assume: $c_{H_u} \simeq c_{H_d} = \mathcal{O}(10^{-2}), c_{Q_3} \simeq c_{U_3} \simeq c_{D_3} = \mathcal{O}(.1)$ and $c_{Q_{1,2}} \simeq c_{U_{1,2}} \simeq c_{D_{1,2}} = \mathcal{O}(1).$

125 Higgs mass in SLIM SUSY



Higgs couplings in SLIM SUSY

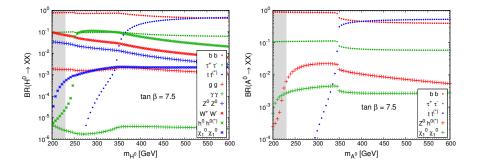
$$R_{XX} = \frac{\sigma(pp \to h + Y)}{\sigma(pp \to h_{sm} + Y)} \frac{B.R.(h \to XX)}{B.R.(h_{sm} \to XX)}$$

(6)

30 61

J. Lorenzo Diaz Cruz (BUAP)

Slim SUSY

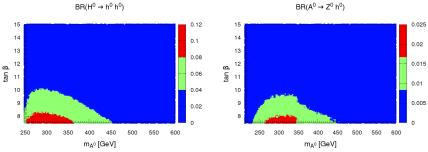

Search for heavy Higgs bosons -Scenarios

Defined according to the nature of LSP (and number of extra neutralinos and charginos), (at the reach of LHC):

- Bino-like LSP Scenario \rightarrow Only one bino-like neutralino at the EW scale; in this case: $|M_1| \ll |M_2|$, $|\mu|$.
- Wino-like LSP Scenario \rightarrow One wino-like neutralino and one wino-like chargino, which occurs for $|M_2| \ll |M_1|, |\mu|$.
- Higgsino-like LSP Scenario \rightarrow Two higgsino-like neutralinos and one higgsino-like chargino, in this case: $|\mu| \ll |M_1|, |M_2|$.

For some range of parameters could have $H, A \to \chi \chi \to$ interesting signals at LHC.

Heavy Higgs decays (Bino-like LSP)

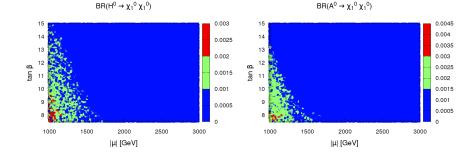


Slim SUSY

September 15, 2013

32 61

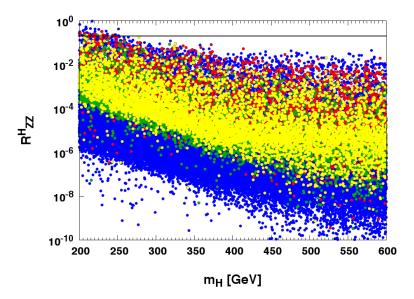
Heavy Higgs decays


 $\mathsf{BR}(\mathsf{A}^0 \to \mathsf{Z}^0 \; \mathsf{h}^0)$

September 15, 2013

33 61

(BUAP) J. Lorenzo Diaz Cruz


Heavy Higgs decays

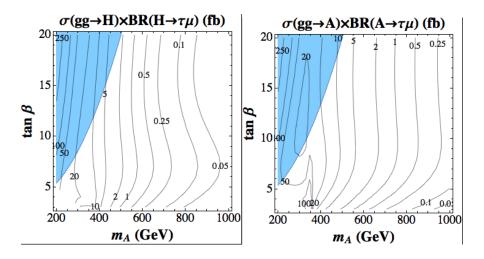
Slim SUSY

34 61

Heavy Higgs signal in ZZ channel

Searching for heavy Higgs bosons at LHC

A. Djouadi and J. Quevillon (arXiv:1304.1787 [hep-ph]), A. Arbey,
M. Battaglia and F. Mahmoudi (arXiv:1303.7450 [hep-ph]), H. Baer,
V. Barger, P. Huang, D. Mickelson, A. Mustafayev and X. Tata (arXiv:1212.2655 [hep-ph]), Y. Kahn, M. McCullough and J. Thaler (arXiv:1308.3490 [hep-ph]), G. Barenboim, C. Bosch,
M. L. Lpez-Ibaez and O. Vives (arXiv:1307.5973 [hep-ph]),
A. Djouadi, L. Maiani, G. Moreau, A. Polosa, J. Quevillon and
V. Riquer (arXiv:1307.5205 [hep-ph]), T. Han, T. Li, S. Su and
L. -T. Wang (arXiv:1306.3229 [hep-ph]), N. Craig, J. Galloway and
S. Thomas (arXiv:1305.2424 [hep-ph]).


Search for heavy Higgses at LHC 5

 $\frac{37}{61}$

⁵ Djouadi and Queve	•	September 15, 2013	
J. Lorenzo Diaz Cruz (BU	AP)	Slim SUSY	September 10, 2010

LFV Higgs decays: $H, A \to \tau \mu^{6}$

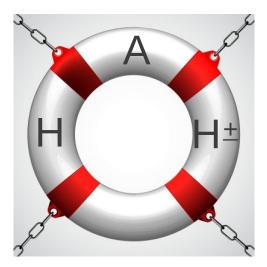
38 / 61

⁶Diaz-Cruz et al (PRD-2000,PLB-2009), ...Arana, Arganda, Herrero (2013) J. Lorenzo Diaz Cruz (BUAP) Slim SUSY

Conclusions.

- Heavy Higgs bosons at the LHC reach are signal of SLIM SUSY (vs Split/Spread SUSY),
- Decays $H \to hh$, $A \to Zh$ have interesting signature; rate may be large enough for $\tan \beta \leq 10$,
- Decays $H(A) \to \chi_1^0 \chi_1^0$, $H(A) \to \chi_1^+ \chi_1^-$ are also interesting to look at,
- LFV Higgs decays,
- Only a few superpartners could be at the reach of LHC,

Is SUSY near a catastrophe?



J. Lorenzo Diaz Cruz (BUAP)

Slim SUSY

SUSY Savers

J. Lorenzo Diaz Cruz (BUAP)

Slim SUSY

September 15, 2013

Scalars and new physics

Extra scalar singlets, doublets, triplets, have been studied in connection with Physics BSM:

- 2HDM (I,II,III-Tx,X,Y, Inert),
- 2HDM within MSSM context (SUSY) ,
- New Scalars with lepton number (ex. sleptons),
- Colored scalars (ex. squarks),
- Singlets and Triplets for neutrino masses,
- Triplets and bi-doublets within LRSM,
- etc., etc.

Is the Higgs something artificial?

Spin (S) and Isospin (T)

T / S	0	1/2	1	3/2	2
0	?	Neutrinos-R	gluon	?	?
1/2	Higgs	electron	?	?	?
		quarks			
1	?	?	W, Z	?	?

$$Q_{em} = T_3 + Y \tag{7}$$

The Hierachy problem

When an scalar interacts with a heavy fermion M, with $L_Y = y \bar{\Psi} \Psi \phi$, and UV cutoff Λ , the scalar mass gets corrected, i.e.

$$m_h^2 = m_0^2 + \frac{y^2}{16\pi^2} [c_1 \Lambda^2 + c_2 m_0^2 ln \frac{\Lambda}{m} + M^2]$$
(8)

Some solutions:

• Accidental cancelacion (NO LONGER WORKS!) ,

$$\lambda = y_t^2 - \frac{1}{8} [3g^2 + g'^2] \tag{9}$$

 $(\rightarrow m_h \simeq 200 \text{ GeV},)$

- Composite Higgs (as in QCD!),
- Cancelation between boson-fermion loops (\rightarrow SUSY),
- Higgs is part of D dim vector field: $A_M = (A_\mu, A_i)$,

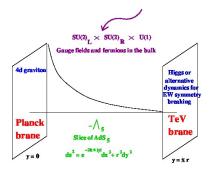
Beyond the SM: models that solve something

- Models with Grand Unification (ex. $SU(5), SO(10), E_{6,..}$)
- Models with new symmetries (SUSY),
- Models with extra dimensions extra.
- etc.

But the prize for the solution, is that these models bring their own problems

Beyond the SM: models "what if"

- Models with new fermions (4ta family, etc)
- Models with new gauge forces (U(1)', Left-Right, ..)
- Models with extra Higgs multiplets (2HDM, triplets,..)


• etc.

Arkani-Hamed/Dimopoulos:

Theories should be consistentes, Theoreticians... not necesarily

Modern view of Physics BSM - Extra Dimensions

- Bosonic XD: $x^{\mu} \to X^M = (x^{\mu}, x^i),$
- Curved Extra dimensions (RS):

• Fermionic/Quantum XD: $x^{\mu} \rightarrow z^{M} = (x^{\mu}, \theta, \bar{\theta})$ (Superspace) \rightarrow Supersymetry!

Conclusions

"The goal is to find one, two, three ...more Higgs bosons at LHC"

September 15, 2013

 $\frac{48}{61}$

J. Lorenzo Diaz Cruz (BUAP)

Supersymmetry (SUSY)

Why is SUSY attractive? (Standard lore)

- It is a new simmetry that relates fermions and bosons,
- Offers the possibility to stabilize the Higgs mass and EWSB,
- Improves Unification and o.k. with proton decay,
- Favors a light Higgs boson, in agreement with EWPT (and LHC?), i.e. $m_h \leq 160$ GeV,
- New sources of flavor and CP violation may help to get the right BAU,
- LSP is stable and a possible Dark matter candidate.

The parameters of the MSSM

In addition to SM parameters, the MSSM includes $\mathrm{O}(100)$ new ones:

- Scalar masses (Sleptons, squarks, Higgs),
- Gaugino masses $(\tilde{M}_G, \tilde{M}_W, \tilde{M}_B)$,
- Trilinear terms $(A_{\tilde{f}} \text{ for squarks and sleptons}),$
- From Higgs sector: $\tan \beta = v_2/v_1$ and μ ,
- The masses of superpartners have important implications for EWSB,
- Spectrum of superpartners depends on mechanism of SUSY breaking,

Constraints on MSSM parameters

SUSY parameters must satisfy:

- Correct EWSB (radiative), (i.e. get right value of m_Z !)
- LHC limits on Higgs mass $(m_h = 125 \text{ GeV?}),$
- LHC (Tevatron) limits on superpartners,
- Bounds on Flavor signals
 - $(K K \text{ mixing}, b \to s + \gamma, B \to \tau \nu, B_s \to \mu \mu \dots \text{etc.})$
- Implications for cosmology (e.g. Relic density of DM),

Simplified models arise for specific SUSY breaking (and mediation) mechanisms,

CMSSM

To get MSSM parameters at TeV scale, one derive them from their values at high scale (SUGRA/GUT) through RGE,

 \rightarrow CMSSM = Constrained Minimal Supersymmetric Standard Model. In the CMSSM one takes (at M_{pl}):

- Universal scalar masses $(=\tilde{m}_0)$
- Universal gaugino masses $(=\tilde{m}_{1/2})$
- Universal trilinear terms $(=A_0)$
- Also $\tan \beta = v_2/v_1$ and sgn(mu).

MSSM Higgs couplings:

$$\begin{array}{ll} \bullet \ (hVV): & \frac{2m_V^2}{v}\cos(\beta-\alpha), \quad v^2=v_1^2+v_2^2, \\ \bullet \ (huu): & \frac{m_u}{v}(\frac{\cos\alpha}{\sin\beta}), \\ \bullet \ (hdd): & \frac{m_d}{v}(\frac{\sin\alpha}{\cos\beta}), \\ \bullet \ (hll): & \frac{m_l}{v}(\frac{\sin\alpha}{\cos\beta}), \\ \bullet \ (hhh): & \simeq \lambda v, \quad \lambda=\frac{g^2+{g'}^2}{8}, \\ \bullet \ (hhhh): & \simeq \lambda. \end{array}$$

Similar expressions hold for H^0, A^0 and H^{\pm} .

EWSB in the MSSM- problems

• EWSB gives a relation between the Z-mass, the soft-Higgs masses and the mu-term (at tree-level):

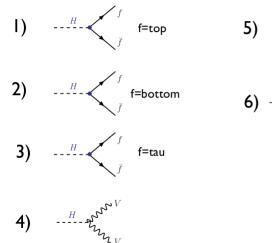
$$M_Z^2 = 2c_1 M_{H_u}^2 - 2t_\beta^2 M_{H_d}^2 - 2\mu^2$$
(10)

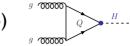
September 15, 2013

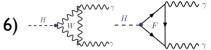
with $c_1 = 1/(t_\beta^2 - 1)$,

- Thus, for a natural solution, SOFT terms should be of $O(m_Z)$,
- But already LEP limits on superpartners ($\tilde{m} \ge 200$ GeV) ruled out such case,
- Including RGE and recent LHC limits make it worse (A. Strumia, ArXive:1101.2195 [hep-ph]):

$$M_Z^2 = 0.2m_0^2 + 0.7M_3^2 - 2\mu^2 \simeq (91GeV)^2 \times 50(\frac{M_3}{780})^2 + \dots \quad (11)$$

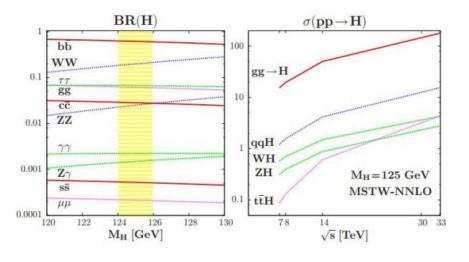

• Thus, MSSM suffers already of some fine-tunning problem,


SUSY Phenomenology- LSP scenarios


With R-parity, LSP and NLSP nature determine the exp. search for SUSY,

- Production: $SM+SM \rightarrow SP+SP$
- Some SP decays into NSP+ SM
- NSP decays into LSP+SM
- Neutralino LSP most widely studied,
- Gravitino LSP gives very different phenomenology,

SM Higgs Couplings

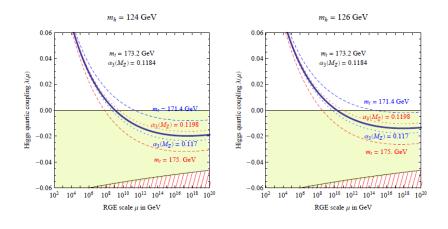


J. Lorenzo Diaz Cruz (BUAP)

September 15, 2013

 $\frac{56}{61}$

SM Higgs Br's and CSx


J. Lorenzo Diaz Cruz (BUAP)

September 15, 2013

57 / 61

Vacuum stability

RGE evolution of Higgs self-coupling: $m_h \simeq \lambda v$

J. Lorenzo Diaz Cruz (BUAP)

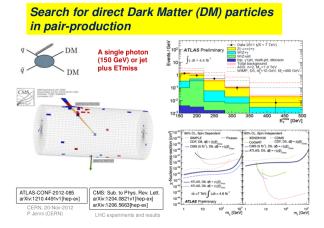
Slim SUSY

58 61

What is the LSP?

- Most popular choice Neutralino LSP,
 - Higgsino-like, Bino-like, wino-like
- With $\chi_1^0 = LSP$, signal of SUSY is cascade decays and missing energy, e.g. $\chi_2^0 \rightarrow l^+ l^- + \chi_1^0$.
- Another possibility: sneutrino LSP, $\tilde{\nu}_L$ is not favored by direct DM search, But $\tilde{\nu}_R$ is still allowed by direct DM search.
- Still another option is: Gravitino (Ψ_{μ}) LSP,
- Within GMM $\Psi_{\mu} = LSP$ gives signals with photons from $\chi_1^0 \to \Psi_{\mu} + \gamma$.

MSSM Higgs and Dark matter


For heavy sfermions the DM relic density is:

$$\Omega_X h^2 = C_X \left(\frac{m_X}{TeV}\right)^2 \tag{12}$$

- For DM X = pure Bino, no aceptable solution,
- For DM $X = \tilde{H}$ pure Higgsino, $C_{\tilde{H}} = 0.09$ and an aceptable solution is obtained for $1 < M_{\tilde{H}} < 1.2$ TeV,
- For DM $X = \tilde{W}$ pure Wino, $C_{\tilde{H}} = 0.02$ and an aceptable solution is otained for $2 < M_{\tilde{W}} < 2.5$ TeV,

In such case detection at LHC may be harder,

DM limits from LHC

J. Lorenzo Diaz Cruz (BUAP)

September 15, 2013

61