# Lepton Flavour Violation in Extended Higgs sectors

Emilie Passemar Los Alamos National Laboratory

Scalars 2013 Warsaw, September 15, 2013

In collaboration with : Alejandro Celis, IFIC Valencia Vincenzo Cirigliano, LANL

Just posted on ArXiv, will appear on Tuesday

- 1. Introduction and Motivation
- 2. CP-even Higgs with LFV
- 3. CP-odd Higgs with LFV
- 4. Conclusion and Outlook

### 1. Introduction and Motivation

#### **1.1 Introduction**

- Discovery of a 125 GeV scalar particle : Standard Higgs? Need to study its property
- Consider the possibility of non-standard LFV couplings of the Higgs arise in several models
   Goudelis, Lebedev,
  - Goudelis, Lebedev,Park'11 Davidson, Grenier'10
- Conveniently parametrized by effective interaction

$$\mathcal{L}_{Y} = -m_{i}\overline{f}_{L}^{i}f_{R}^{i} - Y_{ij}\left(\overline{f}_{L}^{i}f_{R}^{i}\right)\varphi + h.c. + \dots$$

Harnick, Koop, Zupan'12 Blankenburg, Ellis, Isidori'12 McKeen, Pospelov, Ritz'12 Arhrib, Cheng, Kong'12

- In the SM :  $Y_{ij}^{h_{SM}} = \frac{m_i}{v} \delta_{ij}$
- In full generality parametrization of the Yukawas

> 
$$Y_{ii}^{\varphi} = y_i^{\varphi} \frac{m_i}{v}$$
  
> Assumption: CP conservation  $Y_{ij}^{\varphi}$  *real* for  $\varphi \equiv h$  CP-even Higgs  
> *Imaginary* for  $\varphi \equiv A$  CP-odd Higgs

#### 1.1 Introduction

• 
$$\mathcal{L}_{Y} \stackrel{\text{EFT}}{\longrightarrow} \mathcal{L}_{d=6} = -\frac{\lambda_{\ell}^{'ij}}{\Lambda^{2}} (\overline{f}_{L}^{i} \overline{f}_{R}^{j}) H (H^{\dagger} H) + h.c. + ...$$

- $\mathcal{L}_{Y}$  mediates LFV Higgs and generates at low energy
  - ➤ 4 fermions operators
  - Dipole (loops)



## 1.2 Constraints on LFV Higgs couplings

#### • Results :

| Channel                                                              | BR 90% CL                                        | $\sqrt{\left Y_{ij}^{h}\right ^{2}+\left Y_{ji}^{h}\right ^{2}}$ |
|----------------------------------------------------------------------|--------------------------------------------------|------------------------------------------------------------------|
| $\begin{array}{c} \mu \to e\gamma \\ \mu \to 3e \end{array}$         | $< 2.4 \times 10^{-12}$<br>$< 1 \times 10^{-12}$ | $< 3.6 \times 10^{-6} \\ \lesssim 3.1 \times 10^{-5}$            |
| $\begin{array}{c} \tau \to e\gamma \\ \tau \to 3e \end{array}$       | $< 3.3 \times 10^{-8}$<br>$< 2.7 \times 10^{-8}$ | < 0.014<br>$\lesssim 0.12$                                       |
| $\begin{array}{c} \tau \to \mu \gamma \\ \tau \to 3 \mu \end{array}$ | $< 4.4 \times 10^{-8}$<br>$< 2.1 \times 10^{-8}$ | < 0.016<br>$\lesssim 0.25$                                       |

- Bounds from flavour factories : *MEG*, *Belle*, *Babar* and *LHCb* for  $\tau \rightarrow 3\mu$
- Strong constraint from  $\tau \rightarrow \mu \gamma$ loop induced process, very sensitive to UV completion  $\longrightarrow$  Model dependent

**Emilie Passemar** 

#### Harnick, Koop, Zupan'12

• From LHC : best constraints on

 $h \to \tau \mu, \, h \to \tau e$ 



N.B.: Diagonal couplings set to the SM values

## 1.3 Constraints from hadronic $\tau$ decays ( $\tau \rightarrow \mu \pi \pi$ )

- Most of the time not taken into account but important because tree level Higgs exchange less sensitive to UV completion
- Contribution from tree level Higgs exchange



# 2. CP-even Higgs with LFV

#### 2.1 Constraints from $\tau \rightarrow \mu \pi \pi$

• Tree level Higgs exchange



• Problem : Have the hadronic part under control, ChPT not valid at these energies!

Use form factors determined with dispersion relations matched at low energy to CHPT Dreiner, Hanart, Kubis, Meissner'13

#### 2.1 Constraints from $\tau \rightarrow \mu \pi \pi$

• Tree level Higgs exchange



$$\frac{d\Gamma(\tau \to \mu \pi^+ \pi^-)}{d\sqrt{s}} = \frac{(m_\tau^2 - s)^2 \sqrt{s - 4m_\pi^2}}{256\pi^3 m_\tau^3} \frac{\left(|Y_{\tau\mu}^h|^2 + |Y_{\mu\tau}^h|^2\right)}{M_h^4 v^2} |\mathcal{K}_\Delta \Delta_\pi(s) + \mathcal{K}_\Gamma \Gamma_\pi(s) + \mathcal{K}_\theta \theta_\pi(s)|^2$$
with the form factors:
$$\int \left(y_q^h\right)$$

$$\left\langle \pi^+ \pi^- \left|m_u \bar{u}u + m_d \bar{d}d\right| 0 \right\rangle \equiv \Gamma_\pi(s)$$

 $\left\langle \pi^{+}\pi^{-}\left| \theta^{\mu}_{\mu} \right| 0 \right\rangle \equiv \theta_{\pi}(s)$ 

$$\langle \pi^+\pi^- | m_s \bar{s}s | 0 \rangle \equiv \Delta_{\pi}(s)$$

#### 2.1 Constraints from $\tau \rightarrow \mu \pi \pi$

• Contribution from dipole diagrams



$$\mathcal{L}_{eff} = c_L Q_{L\gamma} + c_R Q_{R\gamma} + h.c.$$

with the dim-5 EM penguin operators :

$$Q_{L\gamma,R\gamma} = \frac{e}{8\pi^2} m_{\tau} \left(\mu \sigma^{\alpha\beta} P_{L,R} \tau\right) F_{\alpha\beta}$$

 $C_{L,R} = f\left(\mathbf{Y}_{\tau\mu}\right)$ 

$$\frac{d\Gamma(\tau \to \ell \pi^+ \pi^-)}{d\sqrt{s}} = \frac{\alpha^2 |F_V(s)|^2 \left(|c_L|^2 + |c_R|^2\right)}{768\pi^5 m_\tau} \frac{(s - 4m_\pi^2)^{3/2} (m_\tau^2 - s)^2 (s + 2m_\tau^2)}{s^2}$$

with the vector form factor :

$$\langle \pi^+(p_{\pi^+})\pi^-(p_{\pi^-})|\frac{1}{2}(\bar{u}\gamma^{\alpha}u-\bar{d}\gamma^{\alpha}d)|0\rangle \equiv F_V(s)(p_{\pi^+}-p_{\pi^-})^{\alpha}$$

• Diagram only there in the case of  $\tau^- \rightarrow \mu^- \pi^+ \pi^-$  absent for  $\tau^- \rightarrow \mu^- \pi^0 \pi^0$ neutral mode more model independent

#### 2.2 Determination of the form factors : $F_V(s)$

- Vector form factor
  - > Precisely known from experimental measurement  $e^+e^- \rightarrow \pi^+\pi^-$  and  $\tau^- \rightarrow \pi^0\pi^-\nu_{\tau}$  (isospin rotation)
  - Theoretically: decay very well described by resonances Following properties of *analyticity* and *unitarity* of the FF

 $\longrightarrow$  Dispersive parametrization for  $F_V(s)$  to fit the Belle data on  $\tau^- \rightarrow \pi^0 \pi^- v_{\tau}$ 

Guerrero, Pich'98, Pich, Portolés'08 Gomez, Roig'13

$$F_{V}(s) = \exp\left[\lambda_{+}'\frac{s}{m_{\pi}^{2}} + \frac{1}{2}\left(\lambda_{V}'' - \lambda_{V}'^{2}\right)\left(\frac{s}{m_{\pi}^{2}}\right)^{2} + \frac{s^{3}}{\pi}\int_{4m_{\pi}^{2}}^{\infty}\frac{ds'}{s'^{3}}\frac{\phi_{V}(s')}{(s'+s-i\varepsilon)}\right]$$

Extracted from a model including 3 resonances  $\rho(770)$ ,  $\rho'(1465)$  and  $\rho''(1700)$  fitted to the data

#### 2.2 Determination of the form factors : $F_V(s)$



Very precise determination of  $F_V(s)$  thanks to very precise measurements of Belle!

• With one channel, in the energy region  $\pi\pi \to \pi\pi$ unitarity  $\longrightarrow$  the discontinuity of the form factor is known

disc 
$$\boxed{1}_{2i} disc \ F_I(s) = \operatorname{Im} F_I(s) = F_I(s) \ \sin \delta_I(s) e^{-i\delta_I(s)}$$

Phase of the FF is  $\pi\pi$  scattering phase Known from experiment

Watson's theorem

• Use analyticity to reconstruct the form factor in the entire space:



Omnès representation: 
$$F_{I}(s) = P_{I}(s) \Omega_{I}(s)$$
  
polynomial Omnès function  
$$\Omega_{I}(s) = \exp\left[\frac{s}{\pi} \int_{s_{th}}^{\infty} \frac{ds'}{s'} \frac{\delta_{I}(s')}{s'-s-i\varepsilon}\right]$$

 $P_{I}(s)$  not known but determined from a matching to CHPT at low energy

• 
$$\tau \rightarrow \mu \pi \pi \implies 4m_{\pi}^2 < s < (m_{\tau} - m_{\mu})^2 \sim (1.77 \text{ GeV})^2$$

Two channels contribute  $\pi\pi$  and *KK* 

Donoghue, Gasser, Leutwyler'90 Moussallam'99

Generalisation of the previous method :

$$\begin{array}{ll} \text{Jnitarity} & \longrightarrow & \Gamma_m^{\star}(s) = \sum_n \left\{ \delta_{mn} + 2 \, i \, T_{mn}(s) \, \sigma_n(s) \right\}^{\star} \Gamma_n(s) \\ & \swarrow & \swarrow \\ & \text{Scattering matrix } \pi\pi \to \pi\pi, \ \pi\pi \to K\overline{K} \\ & \overline{K}\overline{K} \to \pi\pi, \ K\overline{K} \to K\overline{K} \end{array}$$

Solve the dispersive integral equations iteratively starting with Omnès functions

$$\operatorname{Im} X_n^{(N+1)}(s) = \sum_{m=1}^2 \operatorname{Re} \left\{ T_{nm}^* \sigma_m(s) X_m^{(N)} \right\} \longrightarrow \operatorname{Re} X_n^{(N+1)}(s) = \frac{1}{\pi} \int_{4m_\pi^2}^{\infty} \frac{ds'}{s' - s} \operatorname{Im} X_n^{(N+1)}(s$$

According to Muskhelishvili, 2 sets of solutions {C<sub>1</sub>(s), D<sub>1</sub>(s)}, {C<sub>2</sub>(s), D<sub>2</sub>(s)}

FFs linear combinations : 
$$\Gamma_n(s) = P_{\Gamma}(s)C_n(s) + Q_{\Gamma}(s)D_n(s)$$

Determined from a matching to ChPT

Inputs : Several inputs solve the Roy-Steiner equations

Ananthanarayan et al'01, Colangelo et al'01





• Inputs :  $\pi\pi \rightarrow K\overline{K}$ 



- A large number of theoretical analyses *Descotes-Genon et al'01, Kaminsky et al'01, Garcia-Martin et al'09, Colangelo et al.'11* and all agree
- 3 inputs:  $\delta_{\pi}(s)$ ,  $\delta_{K}(s)$ ,  $\eta$  from *B. Moussallam*  $\Longrightarrow$  *reconstruct T matrix* Emilie Passemar



#### 2.3 Results





## 2.4 Comparison with ChPT



- Rigorous treatment of hadronic part bound reduced by one order of magnitude!
   Very robust bounds!
- ChPT, EFT only valid at low energy for  $\mathbf{p} << \Lambda = 4\pi f_{\pi} \sim 1 \text{ GeV}$  $\longrightarrow$  not valid up to  $E = (m_{\tau} - m_{\mu})!$

## 3. CP-odd Higgs with LFV

#### 3.1 Constraints from $\tau \rightarrow P$

• Tree level Higgs exchange



• 
$$\mathcal{L}_{\mathbf{Y}} \longrightarrow \mathcal{L}_{eff}^{A} \simeq -\frac{A}{v} \left( \sum_{q=u,d,s} y_{q}^{A} m_{q} \bar{q} i \gamma_{5} q - \sum_{q=c,b,t} y_{q}^{A} \frac{\alpha_{s}}{8\pi} G_{\mu\nu}^{a} \widetilde{G}_{\mu\nu}^{a} \right)$$
  
 $\widetilde{G}_{\mu\nu}^{a} = \frac{1}{2} \epsilon_{\mu\nu\alpha\beta} G_{\alpha\beta}^{a}$ 

• Mediate only one pseudoscalar meson > very characteristic!

Tree level Higgs exchange
 ≻ η, η'

$$\Gamma\left(\tau \to \ell\eta^{(\prime)}\right) = \frac{\bar{\beta}\left(m_{\tau}^{2} - m_{\eta}^{2}\right)\left(|Y_{\mu\tau}^{A}|^{2} + |Y_{\tau\mu}^{A}|^{2}\right)}{256\,\pi\,M_{A}^{4}\,v^{2}\,m_{\tau}} \Big[(y_{u}^{A} + y_{d}^{A})h_{\eta^{\prime}}^{q} + \sqrt{2}y_{s}^{A}h_{\eta^{\prime}}^{s} - \sqrt{2}a_{\eta^{\prime}}\sum_{q=c,b,t}\,y_{q}^{A}\Big]^{2}$$

#### with the decay constants :

$$\begin{split} \langle \eta^{(\prime)}(p) | \bar{q} \gamma_5 q | 0 \rangle &= -\frac{i}{2\sqrt{2}m_q} h^q_{\eta^{(\prime)}} \qquad \langle \eta^{(\prime)}(p) | \bar{s} \gamma_5 s | 0 \rangle = -\frac{i}{2m_s} h^s_{\eta^{(\prime)}} \\ \langle \eta^{(\prime)}(p) | \frac{\alpha_s}{4\pi} G^{\mu\nu}_a \widetilde{G}^a_{\mu\nu} | 0 \rangle &= a_{\eta^{(\prime)}} \end{split}$$
$$\begin{split} & \bigstar \pi : \quad \Gamma(\tau \to \ell \pi^0) = \frac{f^2_\pi m^4_\pi m_\tau}{256\pi M^4_A v^2} \left( |Y^A_{\tau\mu}|^2 + |Y^A_{\mu\tau}|^2 \right) \left( y^A_u - y^A_d \right)^2 \end{split}$$

• 
$$\tau \rightarrow \mu P$$

| Process                     | BR $90\%$ CL           | $M_A = 200 \text{ GeV}$ | $M_A = 500 \text{ GeV}$ | $M_A = 700 \text{ GeV}$ |
|-----------------------------|------------------------|-------------------------|-------------------------|-------------------------|
| $\tau \to \mu \gamma$       | $< 4.4 \times 10^{-8}$ | Z < 0.018               | Z < 0.040               | Z < 0.055               |
| $\tau \to \mu \mu \mu$      | $< 2.1 \times 10^{-8}$ | Z < 0.28                | Z < 0.60                | Z < 0.85                |
| $(*) \ \tau \to \mu \pi$    | $< 11 \times 10^{-8}$  | Z < 41                  | Z < 257                 | Z < 503                 |
| $^{(*)} \tau \to \mu \eta$  | $< 6.5 \times 10^{-8}$ | Z < 0.52                | Z < 3.3                 | Z < 6.4                 |
| $^{(*)} \tau \to \mu \eta'$ | $< 13 \times 10^{-8}$  | Z < 1.1                 | Z < 7.2                 | Z < 14.1                |
| $\tau \to \mu \pi^+ \pi^-$  | $< 2.1 \times 10^{-8}$ | Z < 0.25                | Z < 0.54                | Z < 0.75                |
| $\tau \to \mu \rho$         | $< 1.2 \times 10^{-8}$ | Z < 0.20                | Z < 0.44                | Z < 0.62                |

BaBar'06'10 , Belle'10'11'13

$$\boldsymbol{Z} = \sqrt{\left|\boldsymbol{Y}_{\mu\tau}^{A}\right|^{2} + \left|\boldsymbol{Y}_{\tau\mu}^{A}\right|^{2}}$$

(\*) : No contribution from effective dipole operator or CP-even Higgs

N.B.: Diagonal couplings  $|y_f^A| = 1$ 

• 
$$\tau \rightarrow eP$$

| Process                  | BR $90\%$ CL          | $M_A = 200 \text{ GeV}$ | $M_A = 500 \text{ GeV}$ | $M_A = 700 \text{ GeV}$ |
|--------------------------|-----------------------|-------------------------|-------------------------|-------------------------|
| $\tau \to e\gamma$       | $< 3.3 \times 10^8$   | Z < 0.016               | Z < 0.034               | Z < 0.05                |
| $\tau \rightarrow eee$   | $< 2.7 \times 10^8$   | Z < 0.14                | Z < 0.30                | Z < 0.42                |
| $^{(*)} \tau \to e\pi$   | $< 8 \times 10^{8}$   | Z < 35                  | Z < 219                 | Z < 430                 |
| $^{(*)}\tau \to e\eta$   | $< 9.2 \times 10^{8}$ | Z < 0.6                 | Z < 3.9                 | Z < 7.6                 |
| $^{(*)} \tau \to e\eta'$ | $< 16 \times 10^8$    | Z < 1.3                 | Z < 8                   | Z < 15.6                |
| $\tau \to e \pi^+ \pi^-$ | $< 2.3 \times 10^{8}$ | Z < 0.26                | Z < 0.56                | Z < 0.80                |
| $\tau \to e \rho$        | $< 1.8 \times 10^{8}$ | Z < 0.25                | Z < 0.54                | Z < 0.76                |

BaBar'06'10 , Belle'10'11'13

 $Z = \sqrt{\left|Y_{e\tau}^{A}\right|^{2} + \left|Y_{\tau e}^{A}\right|^{2}}$ 

(\*) : No contribution from effective dipole operator or CP-even Higgs

N.B.: Diagonal couplings  $|y_f^A| = 1$ 

## 3.3 Prospects at LHC

• Decay width :  $\Gamma(A \to \tau^+ \mu^- + \tau^- \mu^+) \equiv \Gamma(A \to \tau \mu) = \frac{M_A \left( |Y_{\tau \mu}^A|^2 + |Y_{\mu \tau}^A|^2 \right)}{8\pi}$ 

Assumption : only SM channels  $(A \rightarrow gg, b\bar{b}, c\bar{c}, \tau\tau...)$  are important

- Large BR for  $A \rightarrow \tau \mu$  can be expected since A does not decay in WW, ZZ
- Results :



#### 4. Conclusion and Outlook

- Conclusion:
  - > We have studied the LFV mode  $\tau \rightarrow \mu \pi \pi$  for constraining LFV couplings of the Higgs
  - Very interesting and important :
    - The more model-independent (tree level exchange of Higgs)
    - Same process can be studied at LHC and at the flavour factories with totally different experimental and theoretical conditions
    - Very little hadronic uncertainties: using form factors and dispersion relations + ChPT More robust bounds!
  - ➢ Phenomenology of CP-odd Higgs, very peculiar pattern decays through  $\tau$  → IP, clear signature
- Outlook:
  - ➤ The more model independent process is  $\tau^- \rightarrow \mu^- \pi^0 \pi^0$  no loop induced processes but the only experimental bound from *CLEO* and weak ~10<sup>-5</sup> → need to be remeasured
  - Dedicated experimental analyses
  - The form factors can be used for EFT analysis of LFV

## 5. Back-up

## 2.4 Comparison with ChPT



## 2.2 Constraints on LFV Higgs couplings



╋

Strong bounds from flavour factories especially for  $\mu \rightarrow e\gamma$ 

• Constraints from  $\tau \rightarrow 3\mu$ 

Tree level contribution subdominant, mainly dominated by loops

$$\Gamma(\tau \to 3\mu) = \frac{\alpha^2 m_{\tau}^5}{72(2\pi)^5} \left[ 12 \log \frac{m_{\mu}^2}{m_{\tau}^2} + 29 + 6 \log 4 \right] \left( |C_L|^2 + |C_R|^2 \right)$$

Bounds from flavour factories + LHCb