Higgs boson pair production at LHC and ILC

Kunio Kaneta (Kavli IPMU)

Based on

• PLB718 (2013) 1441. Collaboration with N. Haba, Y. Mimura, R. Takahashi

• Work in progress with T. Enkhbat, N. Haba, Y. Mimura, R. Takahashi

Scalars 2013 @ Warsaw (12 - 16 Sept. 2013)

Outline

- I, Motivation
- 2, Higgs potential and the Higgs self-interaction
- 3, Non-perturbative Higgs model
- 4, Summary

I, Motivation

 \cancel{k} Higgs has been discovered at $m_h \simeq 125~{
m GeV}$

 \cancel{x} Interactions of Higgs are now probing.

 \Leftrightarrow Higgs potential is still mysterious.

 \cancel{k} Interactions of Higgs are now probing.

 \cancel{k} Interactions of Higgs are now probing.

 \Leftrightarrow Higgs potential is still mysterious.

• How does the Higgs field acquire a VEV?

 \cancel{k} Interactions of Higgs are now probing.

 \cancel{k} Higgs potential is still mysterious.

- How does the Higgs field acquire a VEV?
- What kind of interaction works on there?

(excepting Gravity)

(excepting Gravity)

(excepting Gravity)

(excepting Gravity)

key þoint is ...

• Higgs self-interaction is an origin of EW symmetry breaking.

• It is important to probe the Higgs self-coupling.

 $rac{1}{12}$ Higgs potential as a function of $|H|^2$

$$V = V(|H|^2)$$

We know the Higgs field acquires a VEV. $H = \left(\begin{array}{c} \chi^+ \\ (v+h+i\chi)/\sqrt{2} \end{array}\right), \quad |H|^2 = \frac{v^2}{2} + vh + \frac{h^2}{2} + \frac{\chi^2}{2} + \chi^+\chi^-$

 \bigstar Higgs potential as a function of $|H|^2$

$$V = V(|H|^2)$$

We know the Higgs field acquires a VEV. $H = \begin{pmatrix} \chi^+ \\ (v+h+i\chi)/\sqrt{2} \end{pmatrix}, \quad |H|^2 = \frac{v^2}{2} + vh + \frac{h^2}{2} + \frac{\chi^2}{2} + \chi^+\chi^-$ expansion around $\frac{v^2}{2}$

$$V = V\left(\frac{v^2}{2}\right) + V'\left(\frac{v^2}{2}\right)\left(vh + \frac{h^2}{2} + \frac{\chi^2}{2} + \chi^+\chi^-\right) + \frac{1}{2}V''\left(\frac{v^2}{2}\right)\left(vh + \frac{h^2}{2} + \frac{\chi^2}{2} + \chi^+\chi^-\right)^2 + \frac{1}{6}V'''\left(\frac{v^2}{2}\right)\left(vh + \frac{h^2}{2} + \frac{\chi^2}{2} + \chi^+\chi^-\right)^3$$

 $\stackrel{\wedge}{\propto}$ Higgs potential as a function of $|H|^2$ $V = V(|H|^2)$ We know the Higgs field acquires a VEV. $\begin{bmatrix} \chi^+ & \lambda \\ (v+h+i\chi)/\sqrt{2} \end{bmatrix}, \quad |H|^2 = \frac{v^2}{2} + vh + \frac{h^2}{2} + \frac{\chi^2}{2} + \chi^+\chi^$ expansion around $\overline{2}$ stationary condition $+\frac{1}{2}V''\left(\frac{v^2}{2}\right)\left(vh+\frac{h^2}{2}+\frac{\chi^2}{2}+\chi^+\chi^-\right)^2$ $+\frac{1}{6}V'''\left(\frac{v^2}{2}\right)\left(vh+\frac{h^2}{2}+\frac{\chi^2}{2}+\chi^+\chi^-\right)^3$. . .

 $\stackrel{\wedge}{\propto}$ Higgs potential as a function of $|H|^2$ $V = V(|H|^2)$ We know the Higgs field acquires a VEV. $\left[H = \left(\begin{array}{c} \chi^+ \\ (v+h+i\chi)/\sqrt{2} \end{array} \right), \quad |H|^2 = \frac{v^2}{2} + vh + \frac{h^2}{2} + \frac{\chi^2}{2} + \chi^+\chi^- \right] \right]$ expansion around $\overline{2}$ stationary condition $+\frac{1}{6}V'''\left(\frac{v^2}{2}\right)\left(vh+\frac{h^2}{2}+\frac{\chi^2}{2}+\chi^+\chi^-\right)^3$. . .

 $\stackrel{\wedge}{\propto}$ Higgs potential as a function of $|H|^2$ $V = V(|H|^2)$ We know the Higgs field acquires a VEV. $H = \begin{pmatrix} \chi^+ & \lambda \\ (v+h+i\chi)/\sqrt{2} \end{pmatrix}, \quad |H|^2 = \frac{v^2}{2} + vh + \frac{h^2}{2} + \frac{\chi^2}{2} + \chi^+\chi^$ expansion around $\overline{2}$ stationary condition physical Higgs mass $+\frac{1}{6}V'''\left(\frac{v^2}{2}\right)\left(vh+\frac{h^2}{2}+\frac{\chi^2}{2}+\chi^+\chi^-\right)^2$ Beyond the SM contribution higher dimensional OPs . . .

 $\stackrel{\wedge}{\propto}$ Higgs potential as a function of $|H|^2$ $V = V(|H|^2)$ We know the Higgs field acquires a VEV. $H = \begin{pmatrix} \chi^+ \\ (v+h+i\chi)/\sqrt{2} \end{pmatrix}, \quad |H|^2 = \frac{v^2}{2} + vh + \frac{h^2}{2} + \frac{\chi^2}{2} + \chi^+\chi^$ expansion around $\overline{2}$ stationary condition physical Higgs mass $+\frac{1}{6}V'''\left(\frac{v^2}{2}\right)\left(vh+\frac{h^2}{2}+\frac{\chi^2}{2}+\chi^+\chi^-\right)^{2}$ Beyond the SM contribution higher dimensional OPs cubic Higgs coupling $-i6\left[\frac{1}{2}vV''+\frac{1}{6}v^{3}V'''\right]$

 $\stackrel{\wedge}{\propto}$ Higgs potential as a function of $|H|^2$ $V = V(|H|^2)$ We know the Higgs field acquires a VEV. $H = \begin{pmatrix} \chi^+ \\ (v+h+i\chi)/\sqrt{2} \end{pmatrix}, \quad |H|^2 = \frac{v^2}{2} + vh + \frac{h^2}{2} + \frac{\chi^2}{2} + \chi^+\chi^$ expansion around $\overline{2}$ stationary condition $+\frac{1}{6}V'''\left(\frac{v^2}{2}\right)\left(vh+\frac{h^2}{2}+\frac{\chi^2}{2}+\chi^+\chi^-\right)^3$ Beyond the SM contribution higher dimensional OPs $\lambda_{hhh}^{\rm SM} \equiv \frac{v}{2} V''$ cubic Higgs coupling $\left(=\frac{m_h^2}{2v}\right) \quad \left(C_h \equiv \frac{v^2}{3} \frac{V'''}{V''}\right)$ $-i6\left|\frac{1}{2}vV'' + \frac{1}{6}v^{3}V'''\right| = -i6\lambda_{hhh}^{SM}\left(1 + C_{h}\right)$ $C_h = 0$ for the SM Higgs potential

We focus on $C_h \neq 0$ case.

We focus on $C_h \neq 0$ case.

 \cancel{x} Possible enhancement of Higgs boson pair production

 $rightarrow pp \rightarrow hhX$ @LHC (3 contributions)

We focus on $C_h \neq 0$ case.

 \cancel{x} Possible enhancement of Higgs boson pair production

 $rightarrow pp \rightarrow hhX$ (3 contributions)

We focus on $C_h \neq 0$ case.

 \cancel{x} Possible enhancement of Higgs boson pair production

 $rightarrow pp \rightarrow hhX$ @LHC (3 contributions)

• gluon-gluon fusion

$V = V\left(\frac{v^2}{2}\right) + V'\left(\frac{v^2}{2}\right)\left(vh + \frac{h^2}{2} + \frac{\chi^2}{2} + \chi^+\chi^-\right)$	stationary condition $V'\left(\frac{v^2}{2}\right) = 0$
$+\frac{1}{2}V''\left(\frac{v^2}{2}\right)\left(vh+\frac{h^2}{2}+\frac{\chi^2}{2}+\chi^+\chi^-\right)^2$	physical Higgs mass $m_{\tau}^2 = v^2 V''\left(\frac{v^2}{v}\right)$
$+ \frac{1}{6}V'''\left(\frac{v^2}{2}\right)\left(vh + \frac{h^2}{2} + \frac{\chi^2}{2} + \chi^+\chi^-\right)^3$	Beyond the SM contribution
cubic Higgs coupling $\begin{pmatrix} \lambda_{hhh}^{\rm SM} \equiv \frac{v}{2} V'' \\ \vdots \end{pmatrix} = \begin{pmatrix} \lambda_{hhh}^{\rm SM} \equiv \frac{v}{2} V'' \\ \vdots \end{pmatrix}$	$C_h \equiv \frac{v^2 V''}{V''}$
$-i6\left[\frac{1}{2}vV'' + \frac{1}{6}v^{3}V'''\right] = -i6\lambda_{hhi}^{\rm SM}$	$C_{h} = 0$ for the SM Higgs potential
	- //

 $V = V\left(\frac{v^{2}}{2}\right) + V'\left(\frac{v^{2}}{2}\right)\left(vh + \frac{h^{2}}{2} + \frac{\chi^{2}}{2} + \chi^{+}\chi^{-}\right)$ We focus on $C_h \neq 0$ case. $r'\left(\frac{v^2}{2}\right) = 0$ physical Higgs mass $m_h^2 \equiv v^2 V^{\prime\prime} \left(\frac{v^2}{2} \right)$ $+\frac{1}{2}V''\left(\frac{v^2}{2}\right)\left(vh+\frac{h^2}{2}+\frac{\chi^2}{2}+\chi^+\chi^-\right)$ $\left(\frac{v^2}{2}\right)\left(vh + \frac{h^2}{2} + \frac{\chi^2}{2}\right)$ \cancel{x} Possible enhancement of Higgs boson pair production Beyond the SM cubic Higgs coupling $-i6\left[\frac{1}{2}vV''+\frac{1}{6}v^3V\right]$ $rightarrow pp \rightarrow hhX$ @LHC (3 contributions) for the SM Higgs o • gluon-gluon fusion • Vector boson fusion • Higgs-strahlung g $\overline{}$ $\overline{}$ \overline{} $\overline{}$ \overline{} \overline{} \overline{} $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ H \sim Q**`**H g000000 \sim **_** H g000000 Q**-** H 000000 g

We focus on $C_h \neq 0$ case.

 \cancel{x} Possible enhancement of Higgs boson pair production

 $rightarrow pp \rightarrow hhX$ @LHC

(3 contributions)

In order to understand $\,C_{h}\,$ contribution, we utilize the following effective theory for gluon-Higgs interaction

$$\mathcal{L}_{\text{eff}} = \frac{\alpha_s}{12\pi} G^a_{\mu\nu} G^{a\mu\nu} \ln\left(1 + \frac{h}{v}\right)$$
$$= \frac{\alpha_s}{12\pi} G^a_{\mu\nu} G^{a\mu\nu} \left(\frac{h}{v} - \frac{h^2}{2v} + \cdots\right)$$
(Hagiwara and Murayama)

Amplitude with C_h is obtained by

$$\mathcal{M}(gg \to hh) = \frac{\alpha_s}{3\pi v^2} \left(\frac{3m_h^2(1+C_h)}{\hat{s}-m_h^2} - 1\right)$$

We focus on $C_h \neq 0$ case.

 \cancel{x} Possible enhancement of Higgs boson pair production

 $rightarrow pp \rightarrow hhX$ @LHC

(3 contributions)

In order to understand $\,C_{h}\,$ contribution, we utilize the following effective theory for gluon-Higgs interaction

$$\mathcal{L}_{\text{eff}} = \frac{\alpha_s}{12\pi} G^a_{\mu\nu} G^{a\mu\nu} \ln\left(1 + \frac{h}{v}\right)$$
$$= \frac{\alpha_s}{12\pi} G^a_{\mu\nu} G^{a\mu\nu} \left(\frac{h}{v} - \frac{h^2}{2v} + \cdots\right)$$
(Hagiwara and Murayama)

Amplitude with C_h is obtained by

$$\mathcal{M}(gg \to hh) = \frac{\alpha_s}{3\pi v^2} \left(\frac{3m_h^2(1+C_h)}{\hat{s}-m_h^2} - 1\right)$$

· $C_h > 0$ provides $\mathcal{M} = 0$ at some \hat{s}

$$C_h < 0$$
 , there is no cancellation for any $\ \hat{s} > 4 m_h^2$

We focus on $C_h \neq 0$ case.

 \cancel{x} Possible enhancement of Higgs boson pair production

 $rightarrow pp \rightarrow hhX$ @LHC

(3 contributions)

 10^{-19}

0.0000

↑ 0.0005

 $\hat{s} = 4m_{h}^{2}$

0.0010

 $10m_{h}^{2}$ x

0.0015

 $16m_{h}^{2}$

 $x = \hat{s}/(14 \text{TeV})^2$

0.0020

In order to understand C_h contribution, we utilize the following effective theory for gluon-Higgs interaction $\mathcal{L}_{\text{eff}} = \frac{\alpha_s}{12\pi} G^a_{\mu\nu} G^{a\mu\nu} \ln\left(1 + \frac{h}{v}\right)$ $=\frac{\alpha_s}{12\pi}G^a_{\mu\nu}G^{a\mu\nu}\left(\frac{h}{v}-\frac{h^2}{2v}+\cdots\right)$ (Hagiwara and Murayama) Amplitude with C_h is obtained by $\mathcal{M}(gg \to hh) = \frac{\alpha_s}{3\pi v^2} \left(\frac{3m_h^2(1+C_h)}{\hat{s}-m_{\star}^2} - 1\right)$ 10^{-13} $C_h < 0$ enhances $\mathcal{M}(gg \to hh)|^2$ $gg \to hh$ 10-15 $C_h = 0$ $C_h = 2$ $C_h = 4$ 10^{-17}

 $\boldsymbol{V} = \boldsymbol{V}\left(\frac{\boldsymbol{v}^2}{2}\right) + \boldsymbol{V}'\left(\frac{\boldsymbol{v}^2}{2}\right)\left(\boldsymbol{v}\boldsymbol{h} + \frac{\boldsymbol{h}^2}{2} + \frac{\boldsymbol{\chi}^2}{2} + \boldsymbol{\chi}^+\boldsymbol{\chi}^-\right)$ $V'\left(\frac{v^2}{2}\right) = 0$ We focus on $C_h \neq 0$ case. physical Higgs mass $m_h^2 \equiv v^2 V''\left(\frac{v^2}{2}\right)$ $+ \frac{1}{2} V'' \left(\frac{v^2}{2} \right) \left(vh + \frac{h^2}{2} + \frac{\chi^2}{2} + \chi^+ \chi^- \right)^2 \ll$ $+\frac{1}{6}V'''\left(\frac{v^{2}}{2}\right)\left(vh+\frac{h^{2}}{2}+\frac{\chi^{2}}{2}+\chi^{+}\chi^{-}\right)$ \cancel{x} Possible enhancement of Higgs boson pair production $-i6\left[\frac{1}{2}vV'' + \frac{1}{6}v^3V'''\right]$ $rightarrow pp \rightarrow hhX$ @LHC (3 contributions) Ratio of $\sigma(C_h \neq 0)$ and $\sigma(C_h = 0) = \sigma(SM)$ gluon-gluon fusion 12 g $\overline{}$ $\overline{}$ \overline{} $\overline{}$ \overline{} \overline{} \overline{} $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ H10 $\sigma_{\rm SM}|_{\mu_F = M_{\rm hh}} = 19.5 \text{ fb} (14 \text{ TeV})$ Q $\sigma(C_h)/\sigma_{\rm SM}$ 8 000000 • H g6 -Hg000000 2 Q0 - H 000000 q-20 2 4 C_h The crosse section can reach ~ $10 \times \sigma_{\rm SM}$ $\sigma(pp \to gg \to hh)^{\rm LO}_{\rm SM, 14TeV} \sim 20 \text{ fb}$ necessary luminosity ~ O(1000) fb⁻¹ \longrightarrow ~ O(100) fb⁻¹ (SM) realistic target @ LHC

3, Non-perturbative Higgs model

Now we have found that $C_h < 0$ easily enhance the Higgs pair production.

Now we have found that $C_h < 0$ easily enhance the Higgs pair production.

rightarrow An example for realizing $C_h < 0$

• Toy model

$$V(|H|^2) = m^2 |H|^2 + \Lambda^{4-2a} (|H|^2)^a \qquad \begin{cases} m_h^2 = 2m^2(1-a) \\ C_h = \frac{v^2}{3} \frac{V'''}{V''} = \frac{2}{3}(a-b) \end{cases}$$

This kind of potential can be realized in context of SQCD.

 $b_{h} = \frac{v^{2}}{3} \frac{V'''}{V''} = \frac{2}{3}(a-2)$ < 0 (when a < 0) Now we have found that $C_h < 0$ easily enhance the Higgs pair production.

An example for realizing $C_h < 0$

• Toy model

$$V(|H|^2) = m^2 |H|^2 + \Lambda^{4-2a} (|H|^2)^a$$

$$m_h^2 = 2m^2(1-a)$$

$$C_h = \frac{v^2}{3} \frac{V'''}{V''} = \frac{2}{3}(a-2)$$

$$< 0 \quad \text{(when } a < 0\text{)}$$

This kind of potential can be realized in context of SQCD.

Non-perturbative Higgs model (SQCD)

$$W_{np} = \Lambda^3 \left(\frac{\Lambda^2}{H_u H_d}\right)^{\kappa} \qquad C_h \simeq -\frac{5}{3} - \frac{4}{3}\kappa \qquad < 0 \ (\kappa > 0)$$

(Chivukula and Koulovassilopoulos, ...)

$\overset{\wedge}{\swarrow} \text{ Non-canonical kinetic term}$ i.e. non-canonical Kahler potential i.e. non-canonical Kahler potential i.e. F(x) = 1 in SM

(Chivukula and Koulovassilopoulos, ...)

$$G(x) \equiv xF(x) \text{ and expand around } x = 1$$

$$(M_W^2 W^+ W^- + \frac{M_Z^2}{2}Z^2) \left(1 + G'(1)\frac{2h}{v} + (G'(1) + 2G''(1))\frac{h^2}{v^2} + \cdots\right)$$

(Chivukula and Koulovassilopoulos, ...)

$$G(x) \equiv xF(x) \text{ and expand around } x = 1$$

$$(M_W^2 W^+ W^- + \frac{M_Z^2}{2}Z^2) \left(1 + G'(1)\frac{2h}{v} + (G'(1) + 2G''(1))\frac{h^2}{v^2} + \cdots\right)$$

$$G'(1) = 1 \quad G''(1) = 0 \quad \text{in SM}$$

$$(M_W^2 W^+ W^- + \frac{M_Z^2}{2} Z^2) \left(1 + G'(1) \frac{2h}{v} + (G'(1) + 2G''(1)) \frac{h^2}{v^2} + \cdots \right)$$

From the Higgs coupling measurements,

Higgs to W^+W^-/ZZ coupling is consistent with SM.

$$G'(1) \simeq 1$$

Here we have two parameters related to New Physics

$$C_h$$
 and $C_2\equiv 2G^{\prime\prime}(1)$

 \rightarrow How can these two parameters change Higgs pair production?

rightarrow pp
ightarrow hhjj @ LHC

rightarrow pp
ightarrow hhjj @ LHC

rightarrow pp
ightarrow hhjj @ LHC

 $rightarrow e^+e^- \rightarrow hhX$ @ **ILC**

Summary

 $\cancel{\sim}$ Higgs self-interaction is still unknown.

Self-coupling measurement is important to understand how the Higgs field acquires a VEV.

 $\cancel{\sim}$ Non-perturbative Higgs model is suggested.

 \overleftrightarrow We pointed out that sizable enhancement of Higgs pair production is induced by non-zero $\ C_h$ and $\ C_2$.

Thank you for your attention

 $\sigma(pp \to hhjj) / \sigma(pp \to hhjj)_{\rm SM}$

