# ON GAMMA RAY SIGNATURES FROM SCALAR DARK MATTER

Michel H.G. Tytgat Université Libre de Bruxelles (ULB) Belgium

SCALARS 2013 - September 12-16 2013 - Warsaw, Poland

#### I. GAMMA RAY SPECTRAL FEATURES

### II. PROBLEM & MOTIVATION

III. MAJORANA DM

### IV. REAL SCALAR DM

V. PROSPECTS

Based on work done in collaboration with F. Giacchino and L. Lopez Honorez (arXiv:1307.6480, to be published in JCAP)

### I. GAMMA RAY SPECTRAL FEATURES

**II. PROBLEM & MOTIVATION** 

III. MAJORANA DM

IV. REAL SCALAR DM

V. PROSPECTS

# I ASSUME THAT DM IS MADE OF WIMPS (*i.e.* Relic Abundance from Thermal Freeze-out)



#### WIMP INDIRECT SEARCHES



anti-matter

Problem: astrophysical backgrounds

#### WIMP INDIRECT SEARCHES



More generally search for **SPECTRAL FEATURES** 

#### POSSIBLE GAMMA RAY FEATURES?



#### POSSIBLE GAMMA RAY FEATURES?



MONO-CHROMATIC GAMMA RAYS

#### POSSIBLE GAMMA RAY FEATURES



SECLUDED DM, BOX SHAPED SPECTRUM

#### POSSIBLE GAMMA RAY FEATURES



VIRTUAL INTERNAL BREMSSTRAHLUNG

#### VIRTUAL INTERNAL BREMSSTRAHLUNG?

#### annihilation of DM into charged particles





#### Final State Radiation (FSR)

$$\frac{d\sigma(\chi\chi \to X\bar{X}\gamma)}{dx} \approx \frac{\alpha Q_X^2}{\pi} \mathcal{F}_X(x) \log\left(\frac{s(1-x)}{m_X^2}\right) \sigma(\chi\chi \to X\bar{X})$$

IR dominated, collinear emission universal feature encoded in splitting function

Birkedal, Matchev, Perelstein and Sprey (2005)

#### VIRTUAL INTERNAL BREMSSTRAHLUNG

$$DM - - - - e$$

$$E \qquad \qquad E$$

$$DM - - - \bar{e}$$

$$\mathcal{M} \propto ((p_{DM} - p_{\bar{e}})^2 - M_E^2)^{-1} \sim (M_{DM}^2 - M_E^2 - 2M_{DM}E_{\bar{e}})^{-1}$$

POTENTIALLY VERY LARGE ENHANCEMENT IF  $M_{DM} \sim M_E$ for  $E_{\bar{e}} \sim 0$  corresponding to  $E_{\gamma} \sim M_{DM}$ 

> Bergstrom Phys.Lett. B 225 (1989), 372 Bergstrom, Bringmann & Edsjo JHEP 0801 (2008) 049

#### POSSIBLE GAMMA RAY FEATURES



VIRTUAL INTERNAL BREMSSTRAHLUNG

#### I. GAMMA RAY SPECTRAL FEATURES

## II. PROBLEM & MOTIVATION

III. MAJORANA DM

IV. REAL SCALAR DM

V. PROSPECTS

# THE TROUBLE WITH GAMMA RAY FEATURES



# THE TROUBLE WITH GAMMA RAY FEATURES



expected to be small, e.g.  $\gamma\gamma \quad \mathcal{O}(\alpha^2) \langle \sigma v \rangle_{2-\text{body}} \sim 10^{-30} \text{cm}^3 \cdot \text{s}^{-1}$ 

# THE TROUBLE WITH GAMMA RAY FEATURES



expected to be small, e.g.  $\gamma\gamma \quad \mathcal{O}(\alpha^2) \langle \sigma v \rangle_{2-\text{body}} \sim 10^{-30} \text{cm}^3 \cdot \text{s}^{-1}$ 

**PROBLEM:** 

### HOW TO GET <u>SIGNIFICANT</u> GAMMA RAY FEATURES?

MOTIVATION:

MODEL BUILDING

EXPERIMENT(ALIST)S

# «Significant gamma-ray line from Inert Doublet»



TABLE II: IDM benchmark model results.

Gustafsson, Bergstrom, Lundstrom & Edsjo Phys.Rev.Lett. 99 (2007) 041301

| Model | $v\sigma_{tot}^{v ightarrow 0}$ | Brai           | $\Omega_{ m CDM} h^2$ |            |            |                 |      |
|-------|---------------------------------|----------------|-----------------------|------------|------------|-----------------|------|
|       | $[{\rm cm}^3{\rm s}^{-1}]$      | $\gamma\gamma$ | $Z\gamma$             | $b\bar{b}$ | $c\bar{c}$ | $\tau^+ \tau^-$ |      |
| Ι     | $1.6\times10^{-28}$             | 36             | 33                    | 26         | <b>2</b>   | 3               | 0.10 |
| II    | $8.2\times10^{-29}$             | 29             | 0.6                   | 60         | 4          | 7               | 0.10 |
| III   | $8.7\times10^{-27}$             | 2              | <b>2</b>              | 81         | <b>5</b>   | 9               | 0.12 |
| IV    | $1.9\times10^{-26}$             | 0.04           | 0.1                   | 85         | <b>5</b>   | 10              | 0.11 |

# «Significant gamma-ray line from Inert Doublet»



TABLE II: IDM benchmark model results.

Gustafsson, Bergstrom, Lundstrom & Edsjo Phys.Rev.Lett. 99 (2007) 041301

 $M_{higgs} \sim 500 \text{ GeV}$ 

| Model         | $v\sigma_{tot}^{v \to 0}$        | Brai           | $\Omega_{ m CDM} h^2$ |            |            |                |      |
|---------------|----------------------------------|----------------|-----------------------|------------|------------|----------------|------|
|               | $[\mathrm{cm}^3\mathrm{s}^{-1}]$ | $\gamma\gamma$ | $Z\gamma$             | $b\bar{b}$ | $c\bar{c}$ | $\tau^+\tau^-$ |      |
| Ι             | $1.6\times10^{-28}$              | 36             | 33                    | 26         | <b>2</b>   | 3              | 0.10 |
| II            | $8.2\times10^{-29}$              | 29             | 0.6                   | 60         | 4          | 7              | 0.10 |
| III           | $8.7\times10^{-27}$              | 2              | <b>2</b>              | 81         | <b>5</b>   | 9              | 0.12 |
| $\mathbf{IV}$ | $1.9\times10^{-26}$              | 0.04           | 0.1                   | 85         | <b>5</b>   | 10             | 0.11 |



Fermi-LAT limits on gamma ray lines



Fermi-LAT limits on gamma ray lines



Fermi-LAT limits on gamma ray lines



HESS limits on gamma ray lines

# NEAR FUTURE LIMITS



HESS-II will fill the gap between Fermi-LAT and HESS (2014?)

# NEAR FUTURE LIMITS



HESS-II will fill the gap between Fermi-LAT and HESS (2014?)

# the Fermi-LAT/Weniger 130 GeV line



Weniger JCAP 1208 (2012) 007

See also Brigmann, Huang, Ibarra, Vogl & Weniger JCAP 1207 (2012) 054

# the Fermi-LAT/Weniger 130 GeV line



global significance (LEE) is less than  $2\sigma$ 

# NEAR FUTURE LIMITS



will also test the 130 GeV line at the GC (2014?)

### I. GAMMA RAY SPECTRAL FEATURES

**II. PROBLEM & MOTIVATION** 

## III. MAJORANA DM

IV. REAL SCALAR DM

V. PROSPECTS

#### $DM \ DM \rightarrow SM \ SM$

# WMAP/Planck REQUIRE $\langle \sigma v \rangle \approx 3 \cdot 10^{-26} \text{cm}^3 \cdot \text{s}^{-1}$

#### THAT MAY BE IN THE EARLY UNIVERSE

### MAY BE MUCH SMALLER\* AT THE GALACTIC CENTRE

\* For that matter, it may be larger e.g. through resonant annihilation or Sommerfeld enhancement. This is not considered here.

#### EARLY UNIVERSE



with 
$$x_f = \frac{T_{fo}}{M_{DM}}$$
  $\langle v^2 \rangle \approx 0.3$  at freeze-out

#### GALACTIC CENTRE

 $v \sim 10^{-3}$ 

IF S-WAVE (a) SMALL 
$$\longrightarrow$$
  $\langle \sigma v \rangle_{GC} \ll \langle \sigma v \rangle_{fo}$ 

# ANNIHILATION OF MAJORANA DM INTO LIGHT FERMIONS

Goldberg «Constraint on the Photino mass from cosmology» Phys.Rev.Lett. 50 (1983) 1419

 $\chi\chi \to f\bar{f}$ 

S-WAVE INITIAL STATE



**CP-ODD** 

FINAL STATE



**CP-EVEN** 

# ANNIHILATION OF MAJORANA DM INTO LIGHT FERMIONS

Goldberg «Constraint on the Photino mass from cosmology» Phys.Rev.Lett. 50 (1983) 1419

 $\chi\chi \to f\bar{f}$ 

S-WAVE INITIAL STATE



FINAL STATE



#### S-WAVE ANNIHILATION IS CHIRALLY SUPPRESSED





# ANNIHILATION OF MAJORANA DM INTO LIGHT FERMIONS

Goldberg «Constraint on the Photino mass from cosmology» Phys.Rev.Lett. 50 (1983) 1419

 $\chi\chi \to f\bar{f}$ 

**P-WAVE INITIAL STATE** 



FINAL STATE



#### P-WAVE SUPPRESSED IN CHIRAL LIMIT





# VIRTUAL INTERNAL BREMSSTRAHLUNG IS S-WAVE! \*

 $\chi \chi \to f \bar{f} \gamma$ 



# VIB suppressed by $\alpha_{em}$ (and phase-space) but otherwise dominant process at GC!!!

Bergstrom Phys.Lett. B 225 (1989), 372

Bergstrom, Bringmann & Edsjo JHEP 0801 (2008) 049

\* NB: FSR is  $\propto \langle \sigma v \rangle_{f\bar{f}}$  hence negligible in this scenario
# SUMMARY MAJORANA DM

## EARLY UNIVERSE

$$\langle \sigma v \rangle_{fo} \approx b \langle v^2 \rangle \approx 0.3 \, b \qquad \chi \chi \to f \bar{f}$$

## GALACTIC CENTRE

$$\langle \sigma v \rangle_{GC} = \mathcal{O}(\alpha) \qquad \qquad \chi \chi \to f \bar{f} \gamma$$



# MANY WORKS ON MAJORANA CASE

# NEUTRALINO (of course)

See for instance

Torsten Bringmann & Francesca Calore «Significant enhancement of neutralino dark matter annihilation» arXiv:1308.1089

## ALSO MERE TOY MODELS

See for instance

Mathias Garny, Alejandro Ibarra & Stefan Vogl «Dark matter annihilation into two light fermions and one gauge boson» arXiv:1112.5155

## «The 130 GeV Fingerprint of Right-handed Neutrino Dark Matter»

L. Bergstrom, arXiv:1208.6082

$$\mathcal{L} \supset y_l \bar{L} H_2 N + M_N N^T C N + h.c.$$

E. Ma, hep-ph/06011225

INERT DOUBLET (actually Krauss-Nasri-Trodden model, but does not matter)



## «The 130 GeV Fingerprint of Right-handed Neutrino Dark Matter»

L. Bergstrom, arXiv:1208.6082





## I. GAMMA RAY SPECTRAL FEATURES

**II. PROBLEM & MOTIVATION** 

III. MAJORANA DM

## IV. REAL SCALAR DM

V. PROSPECTS

# ANNIHILATION OF REAL SCALAR DM INTO LIGHT FERMIONS





P. Fileviez Perez, M.B. Wise arXiv:1303.1452

# ANNIHILATION OF REAL SCALAR DM INTO LIGHT FERMIONS

 $SS \to f\bar{f}$  is <u>d-wave</u> suppressed

Takashi Toma arXiv:1307.6181 (July 23) Giacchino, Lopez Honorez & M.T. arXiv:1307.6480 (July 24)

$$\sigma v(SS \to l\bar{l}) = \frac{y_l^4}{60\pi} \frac{v^4}{M_S^2} \frac{1}{(1+r^2)^4}$$

$$r = \frac{M_{\Psi}}{M_S} > 1$$

$$\langle v^4 \rangle = 60 \, x_f^2 \sim 0.1 < \langle v^2 \rangle$$



$$\mathcal{O}_S = m_f \, S^2 \, \bar{\psi}_f \psi_f$$

**P-WAVE INITIAL STATE** 

FINAL STATE





**CP-ODD** 

**CP-EVEN** 

 $\mathcal{O}_P = A \partial_\mu S \, \bar{\psi}_f \gamma^\mu \psi_f$ 

a complex scalar would have p-wave annihilation



$$\mathcal{O}_S = m_f \, S^2 \, \bar{\psi}_f \psi_f$$

**D-WAVE INITIAL STATE** 

FINAL STATE







**CP-EVEN** 



$$\sigma v(SS \to l\bar{l}) = \frac{y_l^4}{60\pi} \frac{v^4}{M_S^2} \frac{1}{(1+r^2)^4}$$

$$r = \frac{M_{\Psi}}{M_S} > 1$$

$$\sigma v(\chi\chi \to l\bar{l}) = \frac{g_l^4}{48\pi} \frac{v^2}{M_{\chi}^2} \frac{1+r^4}{(1+r^2)^4}$$

Thus, *mutatis mutandis*, it takes a **larger coupling** for S than for  $\chi$  to match WMAP/Planck

## gamma ray spectrum precisely the same as for $\chi \chi \rightarrow f f \gamma$



Barger, Keung & Marfatia arXiv:1111.4523 Takashi Toma arXiv:1307.6181 Giacchino, Lopez Honorez & M.T. arXiv:1307.6480 How come? An effective interaction perspective

SCALAR 
$$\mathcal{O}_S = \left(\partial_\mu \bar{l}\gamma_\nu l_R + \bar{l}_R\gamma_\nu\partial_\mu l_R\right)F^{\mu\nu}$$

MAJORANA 
$$\mathcal{O}_{\chi} = \left(\partial_{\mu}\bar{l}_{R}\gamma_{\nu}l_{R} + \bar{l}_{R}\gamma_{\nu}\partial_{\mu}l_{R}\right)\tilde{F}^{\mu\nu}$$

merely amounts to 
$$\vec{E} \rightarrow \vec{B}$$

## but there is a factor of 8

$$\frac{\sigma(SS \to f\bar{f}\gamma)}{\sigma(\chi\chi \to f\bar{f}\gamma)} = \frac{8y_l^4}{g_l^4}$$



### bottom-line: significant VIB signal for real scalar!

Takashi Toma arXiv:1307.6181 Giacchino, Lopez Honorez & M.T. arXiv:1307.6480







#### SCALAR

MAJORANA



need an O(10) boost (Bergstrom)

#### SCALAR

MAJORANA



excluded, but we neglected coupling to the Higgs (*i.e.* much larger viable parameter space in practice)

need an O(10) boost (Bergstrom)

## I. GAMMA RAY SPECTRAL FEATURES

**II. GOAL & MOTIVATION** 

III. MAJORANA DM

IV. REAL SCALAR DM

V. PROSPECTS

# $\mathcal{L} \supset y_l S \,\overline{\Psi} \, l_R + h.c.$

#### A SINGLET SCALAR

# $\mathcal{L} \supset y_l S \,\overline{\Psi} \, l_R + h.c.$

#### A SINGLET SCALAR

$$\mathcal{L} \supset \lambda_{HS} S^2 |H|^2$$
  
Silveira & Zee  
Yndurain & Veltman  
McDonald  
Burgess, Pospelov & ter Veldhuis  
...

Mambrini arXiv:1108.0671

$$\mathcal{L} \supset y_l \, S \, \Psi \, l_R + h.c.$$
 A singlet scalar

$$\mathcal{L} \supset y_l \, S \, \Psi \, l_R + h.c.$$
 A singlet scalar



# $\mathcal{L} \supset y_l S \,\overline{\Psi} \, l_R + h.c.$ A singlet scalar

 $\mathcal{L} \supset y_q \, S \, \bar{\Psi} q_R + h.c.$ 

$$\frac{\langle \sigma v \rangle_{g\bar{q}q}}{\langle \sigma v \rangle_{\gamma \bar{q}q}} = \frac{N_c^2 - 1}{2N_c} \frac{\alpha_s}{Q^2 \alpha} \sim 40 \text{ (up-like quarks)} \\ \sim 150 \text{ (down-like quarks)}$$



+ DIRECT DETECTION + CONSTRAINTS FROM CR ANTI-PROTONS + LHC constraints etc...



S. Rudaz Phys.Rev. D39 (1989) 3549





ANNIHILATION/PRODUCTION





# CONCLUSIONS

A simple model (scalar DM through vector-like portal) with a <u>very</u> significant gamma ray signature (VIB) (not very common)

May be of some interest for model building (*e.g.* model resuscitation, CP violation,...) at the price of introducing many new parameters (Yukawa couplings). **BACKUP SLIDES** 



# PLANNED EXPERIMENTS



improved sensitivity (a factor ~10), perhaps 2018 (?)

# PLANNED (?) EXPERIMENTS



improved resolution (a factor  $\sim 10$ ), launch perhaps 2018 (?)

# «Novel Gamma-ray Spectral Features in the Inert Doublet Model»



# *e.g.* ANNIHILATION OF MAJORANA DM INTO LIGHT FERMIONS

the same, from an effective operator perspective

$$\mathcal{O}_S = m_f \, \bar{\chi} \chi \, \bar{\psi}_{f_L} \psi_{f_R} \quad \longrightarrow \quad \text{S-WAVE ANNIHILATION}$$

$$\mathcal{O}_P = \bar{\chi} \gamma_\mu \gamma_5 \chi \, \bar{\psi}_{f_L} \gamma^\mu \psi_{f_L} \longrightarrow P-WAVE ANNIHILATION$$

# POSSIBLE GAMMA RAY FEATURES



similar signatures, given the current resolution (*i.e.* Fermi-LAT)


## «The 130 GeV Fingerprint of Right-handed Neutrino Dark Matter»

L. Bergstrom, arXiv:1208.6082



(negligible)

(Einasto profile)