Global fitting with LHC Higgs signals in the 2HDMs

Yun Jiang

2013 LHC-TI Fellow Univ. of California, Davis

with J.F. Gunion, S. Kraml and B. Dumont, arXiv. 1309.XXX

SCALARS 2013 12-16 September 2013 Warsaw, Poland July 4th, 2012-A HISTORIC moment in science.

It is a privilege to witness the Higgs discovery.

Yun Jiang (U.C. Davis)

2HDMs Global Fitting

Whether or not it is the SM Higgs?

What's the naive extension?

In the simplest non-trivial extension on the Higgs sector beyond the SM.

- Duplicate a complex $SU(2)_L$ Higgs doublet with the same hypercharge Y = +1.
- More physical Higgs states.
- Output I realized in the MSSM.
- Existence of the charged Higgs boson H^{\pm} ?

<ロ> <四> <四> <四> <四> <四> <四> <四

$$\begin{split} \mathcal{V} = & m_{11}^2 \Phi_1^{\dagger} \Phi_1 + m_{22}^2 \Phi_2^{\dagger} \Phi_2 - \left[m_{12}^2 \Phi_1^{\dagger} \Phi_2 + \text{h.c.} \right] \\ &+ \frac{1}{2} \lambda_1 \left(\Phi_1^{\dagger} \Phi_1 \right)^2 + \frac{1}{2} \lambda_2 \left(\Phi_2^{\dagger} \Phi_2 \right)^2 + \lambda_3 \left(\Phi_1^{\dagger} \Phi_1 \right) \left(\Phi_2^{\dagger} \Phi_2 \right) + \lambda_4 \left(\Phi_1^{\dagger} \Phi_2 \right) \left(\Phi_2^{\dagger} \Phi_1 \right) \\ &+ \left\{ \frac{1}{2} \lambda_5 \left(\Phi_1^{\dagger} \Phi_2 \right)^2 + \text{h.c.} \right\} \end{split}$$

The models we studied

- NO explicit CP violation: all λ_i and m_{12}^2 are assumed to be real.
- **②** NO spontaneous CP breaking: take $\xi = 0$.
- **③** "soft" Z_2 symmetry $(\Phi_1 \rightarrow \Phi_1, \Phi_2 \rightarrow -\Phi_2)$ breaking: $m_{12}^2 \neq 0$; $\lambda_6 = \lambda_7 = 0$.

< □ > , < □ > , < Ξ > , < Ξ > , < □ , のへの

$$\begin{split} \mathcal{V} = & m_{11}^2 \Phi_1^{\dagger} \Phi_1 + m_{22}^2 \Phi_2^{\dagger} \Phi_2 - \left[m_{12}^2 \Phi_1^{\dagger} \Phi_2 + \text{h.c.} \right] \\ &+ \frac{1}{2} \lambda_1 \left(\Phi_1^{\dagger} \Phi_1 \right)^2 + \frac{1}{2} \lambda_2 \left(\Phi_2^{\dagger} \Phi_2 \right)^2 + \lambda_3 \left(\Phi_1^{\dagger} \Phi_1 \right) \left(\Phi_2^{\dagger} \Phi_2 \right) + \lambda_4 \left(\Phi_1^{\dagger} \Phi_2 \right) \left(\Phi_2^{\dagger} \Phi_1 \right) \\ &+ \left\{ \frac{1}{2} \lambda_5 \left(\Phi_1^{\dagger} \Phi_2 \right)^2 + \text{h.c.} \right\} \end{split}$$

The models we studied

- NO explicit CP violation: all λ_i and m_{12}^2 are assumed to be real.
- **②** NO spontaneous CP breaking: take $\xi = 0$.
- **③** "soft" Z_2 symmetry $(\Phi_1 \rightarrow \Phi_1, \Phi_2 \rightarrow -\Phi_2)$ breaking: $m_{12}^2 \neq 0$; $\lambda_6 = \lambda_7 = 0$.

free parameters: $\tan \beta$, m_{12}^2 , λ_1 , λ_2 , λ_3 , λ_4 , λ_5

▲□▶,▲□▶,▲国▶, 目 ,つへの

$$\begin{split} \mathcal{V} = & m_{11}^2 \Phi_1^{\dagger} \Phi_1 + m_{22}^2 \Phi_2^{\dagger} \Phi_2 - \left[m_{12}^2 \Phi_1^{\dagger} \Phi_2 + \text{h.c.} \right] \\ &+ \frac{1}{2} \lambda_1 \left(\Phi_1^{\dagger} \Phi_1 \right)^2 + \frac{1}{2} \lambda_2 \left(\Phi_2^{\dagger} \Phi_2 \right)^2 + \lambda_3 \left(\Phi_1^{\dagger} \Phi_1 \right) \left(\Phi_2^{\dagger} \Phi_2 \right) + \lambda_4 \left(\Phi_1^{\dagger} \Phi_2 \right) \left(\Phi_2^{\dagger} \Phi_1 \right) \\ &+ \left\{ \frac{1}{2} \lambda_5 \left(\Phi_1^{\dagger} \Phi_2 \right)^2 + \text{h.c.} \right\} \end{split}$$

The models we studied

- NO explicit CP violation: all λ_i and m_{12}^2 are assumed to be real.
- **②** NO spontaneous CP breaking: take $\xi = 0$.
- **③** "soft" Z_2 symmetry $(\Phi_1 \rightarrow \Phi_1, \Phi_2 \rightarrow -\Phi_2)$ breaking: $m_{12}^2 \neq 0$; $\lambda_6 = \lambda_7 = 0$.

free parameters: $\tan \beta$, m_{12}^2 , λ_1 , λ_2 , λ_3 , λ_4 , λ_5

Electroweak symmetry breaking

$$\Phi_{\mathbf{1}} = \begin{pmatrix} \phi_{\mathbf{1}}^{\dagger} \\ (v \cos \beta + \rho_{\mathbf{1}} + i\eta_{\mathbf{1}})/\sqrt{2} \end{pmatrix}$$
$$\Phi_{\mathbf{2}} = \begin{pmatrix} \phi_{\mathbf{2}}^{\dagger} \\ (e^{i\xi}v \sin \beta + \rho_{\mathbf{2}} + i\eta_{\mathbf{2}})/\sqrt{2} \end{pmatrix}$$

2 CP-even neutral scalars: $h = -\rho_1 \sin \alpha + \rho_2 \cos \alpha$ $H = \rho_1 \cos \alpha + \rho_2 \sin \alpha$

1 CP-odd neutral pseudoscalar: $A = -\eta_1 \sin \beta + \eta_2 \cos \beta$

2 charged scalars:
$$H^{\pm}$$

$$\begin{split} \mathcal{V} = & m_{11}^2 \Phi_1^{\dagger} \Phi_1 + m_{22}^2 \Phi_2^{\dagger} \Phi_2 - \left[m_{12}^2 \Phi_1^{\dagger} \Phi_2 + \text{h.c.} \right] \\ &+ \frac{1}{2} \lambda_1 \left(\Phi_1^{\dagger} \Phi_1 \right)^2 + \frac{1}{2} \lambda_2 \left(\Phi_2^{\dagger} \Phi_2 \right)^2 + \lambda_3 \left(\Phi_1^{\dagger} \Phi_1 \right) \left(\Phi_2^{\dagger} \Phi_2 \right) + \lambda_4 \left(\Phi_1^{\dagger} \Phi_2 \right) \left(\Phi_2^{\dagger} \Phi_1 \right) \\ &+ \left\{ \frac{1}{2} \lambda_5 \left(\Phi_1^{\dagger} \Phi_2 \right)^2 + \text{h.c.} \right\} \end{split}$$

The models we studied

- NO explicit CP violation: all λ_i and m_{12}^2 are assumed to be real.
- **②** NO spontaneous CP breaking: take $\xi = 0$.
- **9** "soft" Z_2 symmetry $(\Phi_1 \rightarrow \Phi_1, \Phi_2 \rightarrow -\Phi_2)$ breaking: $m_{12}^2 \neq 0$; $\lambda_6 = \lambda_7 = 0$.

our inputs: $m_h, m_H, m_A, m_{H^+}, \tan \beta, \sin \alpha, m_{12}^2$

Electroweak symmetry breaking

$$\Phi_{\mathbf{1}} = \begin{pmatrix} \phi_{\mathbf{1}}^+ \\ (v \cos \beta + \rho_{\mathbf{1}} + i\eta_{\mathbf{1}})/\sqrt{2} \end{pmatrix}$$
$$\Phi_{\mathbf{2}} = \begin{pmatrix} \phi_{\mathbf{2}}^+ \\ (e^{i\xi}v \sin \beta + \rho_{\mathbf{2}} + i\eta_{\mathbf{2}})/\sqrt{2} \end{pmatrix}$$

2 CP-even neutral scalars: $h = -\rho_1 \sin \alpha + \rho_2 \cos \alpha$ $H = \rho_1 \cos \alpha + \rho_2 \sin \alpha$

1 CP-odd neutral pseudoscalar: $A = -\eta_1 \sin \beta + \eta_2 \cos \beta$

$$\mathcal{L} = y_{ij}^1 \bar{\psi}_i \psi_j \Phi_1 + y_{ij}^2 \bar{\psi}_i \psi_j \Phi_2$$

We consider the Type I and Type II models, in which tree level FCNC are completely absent due to some symmetry. $^{\rm 1}$

Model	u_R^i	d_R^i	e_R^i	Realization
Type I	Φ2	Φ2	Φ2	$\Phi_{1} ightarrow - \Phi_{1}$
Type II	Φ2	Φ1	Φ1	$\Phi_1 ightarrow -\Phi_1, d_R^i ightarrow -d_R^i$

$$\mathcal{L}_{\mathbf{Y}\mathbf{u}\mathbf{k}\mathbf{a}\mathbf{w}\mathbf{a}}^{\mathbf{2}\mathbf{H}\mathbf{D}\mathbf{M}} = -\sum_{f=u,d,\ell} \frac{m_f}{v} \left(C_f^{b} \overline{f} fh + C_f^{H} \overline{f} fH - i C_f^{A} \overline{f} \gamma_5 fA \right) \\ - \left\{ \frac{\sqrt{2}V_{ud}}{v} \overline{u} \left(m_u C_u^{A} \mathbf{P}_L + m_d C_d^{A} \mathbf{P}_R \right) dH^+ + \frac{\sqrt{2}m_\ell C_\ell^{A}}{v} \overline{\nu_L} \ell_R H^{\mathbf{1}} + \text{h.c.} \right\}$$

	C_V^h	C_u^h	$C_{d,\ell}^h$	C_V^H	C_u^H	$C_{d,\ell}^H$	C_V^A	C_u^A	$C_{d,\ell}^A$
Type I	$\sin(\beta - \alpha)$	$\frac{\cos \alpha}{\sin \beta}$	$\frac{\cos \alpha}{\sin \beta}$	$\cos(\beta - \alpha)$	$\frac{\sin \alpha}{\sin \beta}$	$\frac{\sin \alpha}{\sin \beta}$	0	$\cot \beta$	$-\cot\beta$
Type II	$\sin(\beta - \alpha)$	$\frac{\cos \alpha}{\sin \beta}$	$-\frac{\sin \alpha}{\cos \beta}$	$\cos(\beta - \alpha)$	$\frac{\sin \alpha}{\sin \beta}$	$\frac{\cos \alpha}{\cos \beta}$	0	$\cot \beta$	aneta

$$(C_V^h)^2 + (C_V^H)^2 + (C_V^A)^2 = 1$$

Theoretical Constraints on the 2HDMs

- Theoretically, (denoted jointly as SUP)
 - Vacuum stability N.G. Deshpande and E. Ma, PRD18(1978)2574 The potential must be bounded from below (positivity).

$$\begin{array}{l} \lambda_1 > 0 \\ \lambda_2 > 0 \\ \lambda_3 > -\sqrt{\lambda_1 \lambda_2} \\ \lambda_3 + \lambda_4 - |\lambda_5| > -\sqrt{\lambda_1 \lambda_2} \end{array} \quad \text{if } \lambda_6 = \lambda_7 = 0 \end{array}$$

Onitarity

Requiring the largest eigenvalue for the tree-level for full multi-state scattering matrix in (h, H, A) space to be less than the upper limit 16π .

Perturbativity

All self couplings among the mass eigenstates and Yukawa coupling must be finite, $|\Lambda_i| < 4\pi$.

▲□▶,▲□▶,▲国▶, 目 ,のへの

Experimental constraints: what we consider ...

• preLHC: SUP, STU, *B*-physics, $(g - 2)_{\mu}$, LEP (applied for some scenarios)

• SMHlimit:

- $H \rightarrow ZZ * \rightarrow 4\ell$ for heavier Higgs up to 1 TeV
- $gg \rightarrow H \rightarrow \tau \tau$ and $gg \rightarrow bbH$ with $H \rightarrow \tau \tau$ for heavier Higgs up tp 500 GeV
- postLHC: additionally, $\gamma\gamma$, ZZ, WW, bb, $\tau\tau$ signals for 125 GeV Higgs

Jack et. al ...

not individually but corporately treat CMS and ATLAS data.
 take the ggF,ttH-VBF,VH 2D correlation into consideration.

Search limits on the heavier Higgs bosons

2HDM scan

vacuum) [18]. We scan over the following ranges ¹:

$$\begin{aligned} \sin \alpha \in [-1,1], & \tan \beta \in [0.5,60], \quad m_{12}^2 \in [-(2 \text{ TeV})^2, (2 \text{ TeV})^2], \\ m_A \in [5 \text{ GeV}, 2 \text{ TeV}], & m_{H^{\pm}} \in [m^*, 2 \text{ TeV}], \end{aligned} \tag{1}$$

where m^* is the lowest value of $m_{H^{\pm}}$ allowed by B physics constraints. These lower bounds as a function of tan β are as shown in Fig. 15 of [19] in the case of the Type II model (roughly $m^* \sim 300 \text{ Ge}$) in this case) and as shown in Fig. 18 of [19] in the case of the Type I model. For the physical Higgs masses, we consider

$$m_h \in [123 \text{ GeV}, 128 \text{ GeV}], \quad m_H \in [128 \text{ GeV}, 2 \text{ TeV}],$$
 (2)

for the case that h is the observed state near 125.5 GeV, or

$$m_H \in [123 \text{ GeV}, 128 \text{ GeV}], \quad m_h \in [10 \text{ GeV}, 123 \text{ GeV}],$$
 (3)

for the case that H is the observed state near 125.5 GeV. Moreover, we separately investigate degenerate scenarios, where two states (h and H, h and A, or H and A) or all three neutral Higgses fall into the 123–128 GeV mass window. The window of 125.5 \pm 2.5 GeV is adopted to account for theoretical uncertainties and to facilitate the study of near-degenerate scenarios.

¹ The lower bound on $\tan \beta$ is chosen to ensure the top Yukawa coupling within the perturbativity region. Unlike Z_2 symmetric 2HDM which constrains $\tan \beta \lesssim 7$ [ref], high $\tan \beta$ up to 100 is allowed when Z_2 symmetry is softly broken.

Yun Jiang (U.C. Davis)

2HDMs Global Fitting

Single Higgs Scenarios

• h or H either lies at 125 GeV.

< □ > , < □ > , < Ξ > , < Ξ > , < □ , のへの

Most important $\cos(\beta - \alpha)$ vs. $\tan \beta$

- Generally, for the lightest Higgs boson h be SM like, $C_V^h \sim \sin(\beta \alpha) \sim 1$.
- However, there are two branches present in Type II model. In addition to the trivial one, the upper strip extends to $C_V^h \sim 0.7$ and also terminates at large tan β due to too large $\tau\tau$ rate.

< □ > (< @ > (< E >) E

$h \sim 125$ -Higgs signals

Type I

 not too much above 1 because that gluon fusion production cannot be much enhanced (universal up and down type couplings).

•
$$\frac{\mu_{gg}^{n}(ZZ)}{\mu_{gg}^{h}(\gamma\gamma)} < 1$$
 for enhanced $\mu_{gg}^{h}(\gamma\gamma)$ rate.

Type II

- easy realization of substantial enhancement.
- $\mu_{gg}^{h}(ZZ)$ is strictly larger than $\mu_{gg}^{h}(\gamma\gamma)$ for enhanced $\mu_{gg}^{h}(\gamma\gamma)$ rate.

$h \sim 125$ -Coupling fits C_D vs. C_V

- Remarkably, the coupling C_V^h prefers to be +1 or so.
- Type I: C_F^h and C_V^h have a moderate spread near the SM limit.
- Type II: in addition to a very SM-like region, there is another region where the deviation in the C_V^h is at most 20% from its SM value, and the C_D^h is slightly smaller in magnitude and have the opposite sign to its SM values.

イロト イヨト イヨト

$h \sim 125$ -Constraints on the other Higgs bosons

• Perturbativity set bound on m_A for a certain $m_{H^{\pm}}$.

$$m_A^2-m_{H^\pm}^2=\frac{v^2}{2}(\lambda_4-\lambda_5)$$

- $m_{H^{\pm}} > 80 \text{ GeV}$ in Type I and $m_{H^{\pm}} > 295 \text{ GeV}$ in Type II.
- No strong correlation away from the decoupling limit $(m_H > 800 \text{ GeV}).$
- The lowest $m_A \cong 40$ GeV. However, if $m_A < \frac{m_h}{2}$, rare decay $h \to AA$ open. $BR(h \to AA)$ at most 10%, otherwise it results in the suppression in the WW and ZZ to escape the LHC signals.

イロト イヨト イヨト

Whether is the Higgs boson(s) other than 125 ${\rm GeV}$ observable or not?

◆□▶,◆□▶,◆≧▶, ≧ ,のへの

$h \sim 125$ -Heavier Higgs boson H search

For heavier CP-even Higgs boson *H*, easier to access are $\mu_{gg}(ZZ)$ and $\mu_{VBF}(ZZ)$, about 0.2. This level of signal would eventually accessible in light of much smaller width ^a.

^aWe correct for the width difference by rescaling the observed limits on $\sigma \times BR$ by $f = \sqrt{\frac{1}{r}}$

Yun Jiang (U.C. Davis)

2HDMs Global Fitting

17 / 35

$h \sim 125$ -Heavier Higgs boson A search

For heavier CP-odd Higgs boson A, the potential interest are $gg \rightarrow A \rightarrow \tau\tau$ and the bottom quark associated processes: $gg \rightarrow bbA$ with $A \rightarrow \tau\tau$.

Yun Jiang (U.C. Davis)

18 / 35

$H \sim 125$ -Parameter and Signals

For H be SM like, $C_V^H \sim \cos(\beta - \alpha) \sim 1$, that is, $\cos(\beta - \alpha) \rightarrow \sin(\beta - \alpha) \sim 0$.

$H \sim 125$ -Coupling fits C_D vs. C_V

In the contrast to the case of $m_h \sim 125~{
m GeV}$,

- The coupling C_V^H could be both -1 and +1.
- C_F^H has about 10% derivation from +1 in Type I whereas C_D^H is strictly constrained near +1 in Type II.

イロト イヨト イヨト

$H \sim 125$ -Constraints on the other Higgs bosons

SAME pattern but the decoupling limit does NOT apply.

Yun Jiang (U.C. Davis)

21 / 35

2

・ロト ・日下・ ・ ヨト

$H \sim 125$ -light Higgs boson h search

- $m_h \ge 60$ GeV with a few exception in which $H \to hh$ decay opens. $BR(H \to hh)$ at most 20 (10)% in Type I (II) to fit the LHC signals.
- Expected rates for most points are obviously too small to allow the detection of the h.
- But there are also allowed parameter choices for which detection in the γγ final state and, especially, the Vh(bb) might prove possible with HL-LHC.

Yun Jiang (U.C. Davis)

2HDMs Global Fitting

$H \sim 125$ -Heavier Higgs boson A search

Yun Jiang (U.C. Davis)

23 / 35

Is it possible that the excess in the Higgs $\to \gamma\gamma$ is due to two 2HDMs degenerate states?

Yes, the signal at 125 GeV cannot be pure A since at the tree level the A does not couple to ZZ, a final state that is definitely present at 125 GeV.

< □ > , < □ > , < Ξ > , < Ξ > , のへの

$h, H \sim 125$ -Parameter and Signals

Yun Jiang (U.C. Davis)

25 / 35

$h, A \sim 125$ -Parameter and Signals

tanβ

・ロト ・日下・ ・ ヨト

2HDMfit (typeII) mh,ma=125.5±2.5 GeV

26 / 35

2

$H, A \sim 125$ -Parameter and Signals

Yun Jiang (U.C. Davis)

27 / 35

- The latest Higgs data from LHC clearly favors a fairly SM-like Higgs boson with mass of 125.5 GeV.
- There is consistent descriptions with the LHC Higgs signal in the both Type I and Type II 2HDMs. The ratio
 <u>µgg(ZZ)</u> might be a possible signature to examine the Type I and II 2HDM if the diphoton rate is confirmed to be very SM-like or a bit enhanced in the future.
- The search associated with other (heavier) Higgs bosons is awaiting.
- More interesting conclusions about Higgs self-interactions is being studied, please stay tuned.
- 2HDM+singlet with a dark matter candidate is a natural extension which we (with Bohdan, Jack and Ola) are now working in progress.

▲□▶,▲□▶,▲国▶, 目 ,のへの

Back Up

◆□▶,◆□▶,◆≧▶, ≧ ,のへの

Stability condition in the 2HDM

Apparently, A matrix reduces to 4×4 in the 2HDM for real λ_5 and $\lambda_6 = \lambda_7 = 0$. In the basis $a = H_1^{\dagger}H_1$, $b = H_2^{\dagger}H_2$, $c = \operatorname{Re}(H_1^{\dagger}H_2)$, $d = \operatorname{Im}(H_1^{\dagger}H_2)$,

$$A = \begin{pmatrix} \frac{\lambda_1}{2} & \frac{\lambda_3}{2} & 0 & 0\\ \frac{\lambda_3}{2} & \frac{\lambda_2}{2} & 0 & 0\\ 0 & 0 & \lambda_4 + \lambda_5 & 0\\ 0 & 0 & 0 & \lambda_4 - \lambda_5 \end{pmatrix}$$
(6)

Using the positivity condition on the root of a quadratic polynomial equation for upper left block, we obtain the conditions requiring all eigenvalues positive are

$$\lambda_1 + \lambda_2 > 0$$

$$\lambda_1 \lambda_2 - \lambda_3^2 > 0$$

$$\lambda_4 + \lambda_5 > 0$$

$$\lambda_4 - \lambda_5 > 0$$
(7)

Or essentially,

$$\lambda_1, \lambda_2 > 0$$

- $\sqrt{\lambda_1 \lambda_2} < \lambda_3 < \sqrt{\lambda_1 \lambda_2}$
 $\lambda_4 > |\lambda_5|$ (8)

This combination seems to be a bit more strict than the ones adopted in most 2HDM papers.

$$\lambda_1 > 0$$

$$\lambda_2 > 0$$

$$\lambda_3 > -\sqrt{\lambda_1 \lambda_2}$$

$$\lambda_3 + \lambda_4 - |\lambda_5| > -\sqrt{\lambda_1 \lambda_2}$$
(9)

Here λ_5 is assumed to be real.

Yun Jiang (U.C. Davis)

2HDMs Global Fitting

31 / 35

э

Basic Constraints – LEP

LEP constraints on Higgs mass limits

Basic Constraints – *B*-physics

B-physics constraints (BR($B_s \to X_s \gamma$), R_b , ΔM_{B_s} , ϵ_K , BR($B^+ \to \tau^+ \nu_\tau$) and BR($B^+ \to D\tau^+ \nu_\tau$): set up lower bound on $m_{H^{\pm}}$.

G. C. Branco et. al. Phys. Rept. 516 (2012) 1

<<p><□>(4)

$\gamma\gamma - ZZ$ Correlation Analysis

A. Drozd, B. Grzadkowski, J. F. Gunion and YJ, JHEP 05(2013)072

$$r_{s} \equiv \frac{R_{gg}^{s}(\gamma\gamma)}{R_{gg}^{s}(ZZ)} = \frac{\Gamma(s \to \gamma\gamma)/\Gamma(h_{SM} \to \gamma\gamma)}{\Gamma(s \to ZZ)/\Gamma(h_{SM} \to ZZ)}$$

$$r_{s} \simeq \frac{(C_{WW}^{s})^{2}}{(C_{ZZ}^{s})^{2}} \left(\frac{\mathcal{A}_{W}^{SM} - \frac{C_{t\bar{t}}^{s}}{C_{WW}^{s}} \mathcal{A}_{t}^{SM} + \mathcal{A}_{H\pm} \text{term}}{\mathcal{A}_{W}^{SM} - \mathcal{A}_{t}^{SM}} \right)^{2} = \left(\frac{\mathcal{A}_{W}^{SM} - \frac{C_{t\bar{t}}^{s}}{C_{WW}^{s}} \mathcal{A}_{t}^{SM}}{\mathcal{A}_{W}^{SM} - \mathcal{A}_{t}^{SM}} \right)^{2}$$

$$r_s < 1 \Longrightarrow 1 < rac{C_{t\bar{t}}^s}{C_{WW}^s} < 2rac{\mathcal{A}_W^{SM}}{\mathcal{A}_t^{SM}} - 1 \simeq 9$$

When $C_{t\bar{t}}^{s}/C_{WW}^{s}$ is outside of the above interval then $r_{s} > 1$.

<<u>↓□▶,<@▶,<≣▶,</u> ≧ ,のへの

$\gamma\gamma - ZZ$ Correlation Analysis (in Type II 2HDM)

A. Drozd, B. Grzadkowski, J. F. Gunion and YJ, JHEP 05(2013)072

Yun Jiang (U.C. Davis)

35 / 35