

Scalars 2013, 11 - 16 Sept. 2013

# Naoyuki Haba (Shimane U, Japan)

NH, K. Kaneta, R. Takahashi,

arXiv:1309.1231 [hep-ph] (arXiv:1309.3254 [hep-ph])

# contents

§1 introduction

§2 next to new minimal standard model §3 summary

# §1 introduction



### •LHC shows no evidence of BSM.

no SUSY, no extraD,···



#### •LHC shows no evidence of BSM.

no SUSY, no extraD,···

•SM ( $m_{H} \sim 126$  GeV,  $m_{t} \sim 173$  GeV) can be a final theory?



# LHC shows no evidence of BSM. no SUSY, no extraD,... SM (m<sub>H</sub>~126GeV, m<sub>t</sub>~173 GeV) can be a final theory? maybe No



 LHC shows no evidence of BSM. no SUSY, no extraD,...
 SM (m<sub>H</sub>~126GeV, m<sub>t</sub>~173 GeV) can be a final theory? maybe No, because LHC shows no evidence of BSM.
 no SUSY, no extraD,...
 SM (m<sub>H</sub>~126GeV, m<sub>t</sub>~173 GeV) can be a final theory?

maybe No, because

Problems in SM

- hierarchy problem
- dark matter
- $\nu$  mass, BAU
- inflation
- cosmological constant
- charge quantization (gauge coupling unification)
- strong CP

LHC shows no evidence of BSM.
 no SUSY, no extraD,...
 SM (m<sub>H</sub>~126GeV, m<sub>t</sub>~173 GeV) can be a final theory?

maybe No, because

Problems in SM

- hierarchy problem
- dark matter
- $\nu$  mass, BAU
- inflation
- cosmological constant
- charge quantization (gauge coupling unification)
- strong CP

let us reconsider various possibility of BSM once again, since we do not know the answer what is BSM.

• much better than cosmological constant terrible fine-tuning  $\Lambda^4/Mp^4 \sim 10^{120}$ 

- much better than cosmological constant terrible fine-tuning  $\Lambda^4/Mp^4 \sim 10^{120}$
- quadratic divergence is simply subtracted (b.c. @ M<sub>P</sub>)?
   (physically meaningful value is distant from critical line & not location of critical line itself.)

- much better than cosmological constant terrible fine-tuning  $\Lambda^4/Mp^4 \sim 10^{120}$
- quadratic divergence is simply subtracted (b.c. @ M<sub>P</sub>)?
   (physically meaningful value is distant from critical line & not location of critical line itself.)
- $m_H \sim 126$  GeV,  $m_{top} \sim 173$  GeV in the SM

 $\rightarrow$  triple coincidence @ Mp

(M. Lindner's talk)

 $\mathbf{m}_{H} \propto [\Lambda - y_{1}^{2} + 3g_{2}^{2}/8 + g_{1}^{2}/8] \Lambda^{2} \sim 0 \text{ (Veltman condition)}^{\text{Froggah Nielsen (96)}} M.Shaposhnikov (07)$ 

 $\begin{cases} \beta_{\lambda} \sim [\lambda^{2} - \lambda (g_{1}^{2}/8 + 3g_{2}^{2}/8 - y_{1}^{2}/2) + g_{1}^{4}/64 + g_{1}^{2}g_{2}^{2}/32 + 3g_{2}^{4}/64 - y_{1}^{4}/4] \sim 0\\ \lambda \sim 0 \end{cases}$ 

- -> Higgs potential is flat @M<sub>p</sub> (induced only radiative correction) (Higgs inflation)
- -> SUSY~10<sup>10</sup>GeV (I. Antoniadis' talk)

-> conformal sym? shift sym?



G.Degrassi, S.Di Vita, J.Elias-Miro, J.R.Espinosa, G.F.Giudice, G.Isidori and A.Strumia, JHEP1208 (2012) 098

- much better than cosmological constant terrible fine-tuning  $\Lambda^4/Mp^4 \sim 10^{120}$
- quadratic divergence is simply subtracted (b.c. @ M<sub>P</sub>)?
   (physically meaningful value is distant from critical line & not location of critical line itself.)
- $m_H \sim 126$  GeV,  $m_{top} \sim 173$  GeV in the SM

 $\rightarrow$  triple coincidence @ Mp

(M. Lindner's talk)

 $\mathbf{m}_{H} \propto [\Lambda - y_{1}^{2} + 3g_{2}^{2}/8 + g_{1}^{2}/8] \Lambda^{2} \sim 0 \text{ (Veltman condition)}^{\text{Froggah Nielsen (96)}} M.Shaposhnikov (07)$ 

 $\begin{cases} \beta_{\lambda} \sim [\lambda^{2} - \lambda (g_{1}^{2}/8 + 3g_{2}^{2}/8 - y_{1}^{2}/2) + g_{1}^{4}/64 + g_{1}^{2}g_{2}^{2}/32 + 3g_{2}^{4}/64 - y_{1}^{4}/4] \sim 0\\ \lambda \sim 0 \end{cases}$ 

- -> Higgs potential is flat @Mp (induced only radiative correction) (Higgs inflation)
- -> SUSY~10<sup>10</sup>GeV (I. Antoniadis' talk)
- -> conformal sym? shift sym?
- nature chooses fine-tuning?
   (CNO-cycle, size of sun-moon from earth...)



G.Degrassi, S.Di Vita, J.Elias-Miro, J.R.Espinosa, G.F.Giudice, G.Isidori and A.Strumia, JHEP1208 (2012) 098

- much better than cosmological constant terrible fine-tuning  $\Lambda^4/Mp^4 \sim 10^{120}$
- quadratic divergence is simply subtracted (b.c.  $@M_P$ )? (physically meaningful value is distant from critical line & not location of critical line itself.)
- $m_H \sim 126 \text{ GeV}$ ,  $m_{top} \sim 173 \text{ GeV}$  in the SM

 $\rightarrow$  triple coincidence @ Mp

(M. Lindner's talk)

Froggah Nielsen (96) M.Shaposhnikov (07)

 $\begin{cases} m_{H} \propto [\lambda - y_{t}^{2} + 3g_{2}^{2}/8 + g_{1}^{2}/8] \Lambda^{2} \sim 0 \text{ (Veltman condition)} & \text{Froggah Nielsen} \\ \beta_{\lambda} \sim [\lambda^{2} - \lambda (g_{1}^{2}/8 + 3g_{2}^{2}/8 - y_{t}^{2}/2) + g_{1}^{4}/64 + g_{1}^{2}g_{2}^{2}/32 + 3g_{2}^{4}/64 - y_{t}^{4}/4] \sim 0 \\ \lambda \sim 0 & \text{Froggah Nielsen} \end{cases}$ 

- -> Higgs potential is flat @Mp (induced only radiative correction) (Higgs inflation)
- -> SUSY~10<sup>10</sup>GeV (I. Antoniadis' talk)
- -> conformal sym? shift sym?
- nature chooses fine-tuning? (CNO-cycle, size of sun-moon from earth...)
- multiverse? no fine-tuning problem (Y. Nomura's talk)



G.Degrassi, S.Di Vita, J.Elias-Miro, J.R.Espinosa, G.F.Giudice, G.Isidori and A.Strumia, JHEP1208 (2012) 098

- much better than cosmological constant terrible fine-tuning  $\Lambda^4/Mp^4 \sim 10^{120}$
- quadratic divergence is simply subtracted (b.c.  $@M_P$ )? (physically meaningful value is distant from critical line & not location of critical line itself.)
- $m_H \sim 126 \text{ GeV}$ ,  $m_{top} \sim 173 \text{ GeV}$  in the SM

 $\rightarrow$  triple coincidence @ Mp

(M. Lindner's talk)

Froggah Nielsen (96) M.Shaposhnikov (07)

 $\begin{cases} m_{H} \propto [\lambda - y_{t}^{2} + 3g_{2}^{2}/8 + g_{1}^{2}/8] \Lambda^{2} \sim 0 \text{ (Veltman condition)} & \text{Froggah Nielsen} \\ \beta_{\lambda} \sim [\lambda^{2} - \lambda (g_{1}^{2}/8 + 3g_{2}^{2}/8 - y_{t}^{2}/2) + g_{1}^{4}/64 + g_{1}^{2}g_{2}^{2}/32 + 3g_{2}^{4}/64 - y_{t}^{4}/4] \sim 0 \\ \lambda \sim 0 & \text{Froggah Nielsen} \end{cases}$ 

- -> Higgs potential is flat @Mp (induced only radiative correction) (Higgs inflation)
- -> SUSY~10<sup>10</sup>GeV (I. Antoniadis' talk)
- -> conformal sym? shift sym?
- nature chooses fine-tuning? (CNO-cycle, size of sun-moon from earth...)
- multiverse? no fine-tuning problem (Y. Nomura's talk)

= 126 GeV (dashed)  $M_h = 124 \text{ GeV} (\text{dotted})$  $M_t = 171.0 \text{ GeV}$ 0.10 Higgs quartic coupling  $\lambda(\mu)$  $\alpha_s(M_Z) = 0.1184$  $\lambda_{eff} = 4V/h^4$ 0.05  $\lambda$  in MS 0.00 -0.051010 1012 1014 1016 1018 1020  $10^{4}$ 106  $10^{8}$ RGE scale  $\mu$  or h vev in GeV

G.Degrassi, S.Di Vita, J.Elias-Miro, J.R.Espinosa, G.F.Giudice, G.Isidori and A.Strumia, JHEP1208 (2012) 098

"hierarchy problem" is really a problem?

Forgetting hierarchy problem,

### Problems in SM

- hierarchy problem
- dark matter
- $\nu$  mass, BAU
- inflation
- cosmological constant
- charge quantization (gauge coupling unification)
  strong CP
  - •

by introducing minimal new fields (& parameters)

### Problems in SM

- hierarchy problem
- dark matter
- $\nu$  mass, BAU
- inflation
- cosmological constant
- charge quantization (gauge coupling unification)
  strong CP
  - •

by introducing minimal new fields (& parameters)

# New Minimal SM

Forgetting hierarchy problem, let us try to explain other



hierarchy problem

 $L_{DM} = -m_{S}^{2}S^{2} - k \mid H \mid^{2} S^{2} - \lambda_{S}S^{4}$ 

- dark matter  $\rightarrow$  introduce real scalar DM
  - $\nu$  mass, BAU
  - inflation
  - cosmological constant
  - charge quantization (gauge coupling unification)
    strong CP
    - •

by introducing minimal new fields (& parameters)

# New Minimal SM

#### Problems in SM

- hierarchy problem
- dark matter  $\rightarrow$  introduce real scale  $L_{vR} = -MN^cN + y_v L\widetilde{H}\overline{N}$
- () $\nu$  mass, BAU  $\rightarrow$  introduce two  $\nu_R$  & leptogenesis
  - inflation
  - cosmological constant
  - charge quantization (gauge coupling unification)
    strong CP
    - •

by introducing minimal new fields (& parameters)

# New Minimal SM



by introducing minimal new fields (& parameters)

# New Minimal SM



•

by introducing minimal new fields (& parameters)

# New Minimal SM

# §2 next to new minimal standard model



Forgetting hierarchy problem, let us focus on solving other problems



•

by introducing minimal new fields (& parameters)

# New Minimal SM

Forgetting hierarchy problem, let us focus on solving other problems



by introducing minimal new fields (& parameters)

Forgetting hierarchy problem, let us focus on solving other problems



by introducing minimal new fields (& parameters)





#### New Minimal SM:

$$L_{NMSM} = L_{SM} + L_{DM} + L_{vR} + L_{Infration} + L_{CC}$$

$$L_{SM} \supset -\lambda(|H|^2 - v^2)^2$$

$$L_{DM} = -m_s^2 S^2 - k |H|^2 S^2 - \lambda_s S^4$$

$$L_{vR} = -M \overline{N^c} N + y_v L \widetilde{H} \overline{N}$$

$$L_{Infration} = -m^2 \varphi^2 - \mu \varphi^3 - \kappa \varphi^4$$

$$L_{CC} = (2.3 \times 10^{-3} eV)^4$$

+h.c. + Kinetic terms

$$\begin{split} L_{NNMSM} &= L_{SM} + L_{DM} + L_{vR} + L_{Infration} + L_{CC} + \underline{L_{GCU}} \\ L_{SM} \supset -\lambda (|H|^2 - v^2)^2 \\ L_{DM} &= -m_s^2 S^2 - k |H|^2 S^2 - \lambda_s S^4 \\ L_{vR} &= -M \overline{N^c} N + y_v L \widetilde{H} \overline{N} \\ L_{Infration} &= -B \varphi^4 \bigg[ \ln \bigg( \frac{\varphi^2}{\sigma^2} \bigg) - \frac{1}{2} \bigg] - B \sigma^4 - \mu_1 \varphi |H|^2 - \kappa_H \varphi^2 |H|^2 - \kappa_S \varphi^2 S^2 \\ L_{CC} &= (2.3 \times 10^{-3} eV)^4 \\ &+ \text{h.c. + Kinetic terms} \\ \underline{L_{GCU}} &= M_3 \lambda_3^2 + M_2 \lambda_2^2 + M_{L_i} \overline{L_i} L_i + y_L L \widetilde{H} E + y_L \overline{L}^{\dagger} H^{\dagger} E \end{split}$$

$$\begin{split} L_{NNMSM} &= L_{SM} + L_{DM} + L_{vR} + L_{Infration} + L_{CC} + \underline{L}_{GCU} \\ L_{SM} \supset -\lambda (|H|^2 - v^2)^2 \\ L_{DM} &= -m_s^2 S^2 - k |H|^2 S^2 - \lambda_s S^4 \\ L_{vR} &= -M \overline{N^c} N + y_v L \widetilde{H} \overline{N} \\ L_{Infration} &= -B \varphi^4 \bigg[ \ln \bigg( \frac{\varphi^2}{\sigma^2} \bigg) - \frac{1}{2} \bigg] - B \sigma^4 - \mu_1 \varphi |H|^2 - \kappa_H \varphi^2 |H|^2 - \kappa_S \varphi^2 S^2 \\ L_{CC} &= (2.3 \times 10^{-3} eV)^4 \\ &\quad + \text{h.c. + Kinetic terms} \\ L_{GCU} &= M_3 \lambda_3^2 + M_2 \lambda_2^2 + M_{L_i} \overline{L_i} L_i + y_L \widetilde{H} \overline{E} + y_L \overline{L}^{\dagger} H^{\dagger} E \end{split}$$
SU(3) adjoint SU(2) adjoint fermion Inth vector-like Lepton doublets

$$\begin{split} L_{NNMSM} &= L_{SM} + L_{DM} + L_{vR} + L_{Infration} + L_{CC} + L_{GCU} \\ L_{SM} \supset -\lambda (|H|^2 - v^2)^2 & \text{introduce } \mathbb{Z}_2\text{-sym,} \\ L_{DM} &= -m_1 S^2 - k |H|^2 S^2 - \lambda S^4 & \text{odd: S} \\ L_{vR} &= -M N^c N + y_v L \widetilde{H} \overline{N} \\ L_{Infration} &= -B \varphi^4 \bigg[ \ln \bigg( \frac{\varphi^2}{\sigma^2} \bigg) - \frac{1}{2} \bigg] - B \sigma^4 - \mu_1 \varphi |H|^2 - \kappa_H \varphi^2 |H|^2 - \kappa_S \varphi^2 S^2 \\ L_{CC} &= (2.3 \times 10^{-3} eV)^4 & \text{+h.c. + Kinetic terms} \\ L_{GCU} &= M_3 \lambda_3^2 + M_2 \lambda_2^2 + M_{L_i} \overline{L_i} L_i + y_L L \widetilde{H} E + y_L \overline{L}^{\dagger} H^{\dagger} E \\ \text{SU(3) adjoint fermion} & \text{SU(2) adjoint fermion} & \text{nth vector-like Lepton doublets} \\ \text{Setup: } M_3 = M_2 = M_L & \text{Renormalizable OPs} \end{split}$$

$$\begin{split} L_{NNMSM} &= L_{SM} + L_{DM} + L_{vR} + L_{Infration} + L_{CC} + \underline{L}_{GCU} \\ L_{SM} \supset -\lambda (|H|^2 - v^2)^2 & \text{introduce } \mathbb{Z}_2 \text{-sym,} \\ L_{DM} &= -m \underbrace{S^2}_{} - k |H|^2 \underbrace{S^2}_{} - \lambda \underbrace{S^4}_{} & \text{introduce } \mathbb{Z}_2 \text{-sym,} \\ dd: S, \lambda_3, \lambda_2 \\ L_{vR} &= -M \overline{N^c} N + y_v L \widetilde{H} \overline{N} \\ L_{Infration} &= -B \varphi^4 \bigg[ \ln \bigg( \frac{\varphi^2}{\sigma^2} \bigg) - \frac{1}{2} \bigg] - B \sigma^4 - \mu_1 \varphi |H|^2 - \kappa_H \varphi^2 |H|^2 - \kappa_S \varphi^2 S^2 \\ L_{CC} &= (2.3 \times 10^{-3} eV)^4 & + \text{h.c. + Kinetic terms} \\ L_{GCU} &= M \underbrace{\lambda_3^2}_{} + M \underbrace{\lambda_2^2}_{} + M_{L_i} \overline{L_i} L_i + y_L L \widetilde{H} E + y_L \overline{L}^{\dagger} H^{\dagger} E \\ \text{SU(3) adjoint fermion} & \text{SU(2) adjoint fermion} \\ \text{SU(2) adjoint fermion} & \text{nth vector-like Lepton doublets} \\ \text{Setup: } M_3 = M_2 = M_L \\ \end{array}$$

$$\begin{split} L_{NNMSM} &= L_{SM} + L_{DM} + L_{vR} + L_{Infration} + L_{CC} + \underline{L}_{GCU} \\ L_{SM} \supset -\lambda (|H|^2 - v^2)^2 & \text{introduce } \mathbb{Z}_2 \text{-sym,} \\ L_{DM} &= -m \underbrace{S^2}_{} - k |H|^2 \underbrace{S^2}_{} - \lambda \underbrace{S^4}_{} & \text{odd: } S, \Lambda_3, \Lambda_2 \\ L_{vR} &= -M \overline{N^c} N + y_v L \widetilde{H} \overline{N} & \text{Chaotic} \rightarrow CW \text{-type} \\ L_{Infration} &= -B \varphi^4 \left[ \ln \left( \frac{\varphi^2}{\sigma^2} \right) - \frac{1}{2} \right] - B \sigma^4 - \mu_1 \varphi |H|^2 - \kappa_H \varphi^2 |H|^2 - \kappa_S \varphi^2 S^2 \\ L_{CC} &= (2.3 \times 10^{-3} eV)^4 & \text{+h.c. + Kinetic terms} \\ L_{GCU} &= M \underbrace{\lambda_3^2}_{} + M \underbrace{\lambda_2^2}_{} + M_{L_i} \overline{L_i} L_i + y_L L \widetilde{H} E + y_L \overline{L^{\dagger}} H^{\dagger} E \\ \text{SU(3) adjoint fermion} & \text{SU(2) adjoint fermion} & \text{nth vector-like Lepton doublets} \\ \text{Setup: } M_3 \text{=} M_2 \text{=} M_L & \text{Renormalizable OPs} \end{split}$$

$$\begin{split} L_{NNMSM} &= L_{SM} + L_{DM} + L_{vR} + L_{Infration} + L_{CC} + \underline{L}_{GCU} \\ L_{SM} \supset -\lambda (|H|^2 - v^2)^2 & \text{introduce } \mathbb{Z}_2\text{-sym,} \\ D_{DM} &= -m_s S^2 - k |H|^2 S^2 - \lambda S^4 & \text{odd: } S, \lambda_3, \lambda_2 \\ L_{VR} &= -M N^c N + y_v L \widetilde{H} \widetilde{N} \\ L_{hfration} &= -B \varphi^4 \left[ \ln \left( \frac{\varphi^2}{\sigma^2} \right) + \frac{1}{2} \right] - B \sigma^4 - \mu_1 \varphi |H|^2 - \kappa_H \varphi^2 |H|^2 - \kappa_S \varphi^2 S^2 \\ L_{CC} &= (2.3 \times 10^{-3} eV)^4 & \text{+h.c. + Kinetic terms} \\ \bigstar L_{GCU} &= M_s \lambda_3^2 + M_z \lambda_2^2 + M_{L_s} \widetilde{L}_i L_i + y_L L \widetilde{H} E + y_L \widetilde{L}^{\dagger} H^{\dagger} E \\ \text{SU(3) adjoint fermion} & \text{SU(2) adjoint fermion} & \text{nth vector-like Lepton doublets} \\ \text{Setup: } M_3 = M_2 = M_L & \text{Renormalizable OPs} \end{split}$$
$$\begin{split} L_{NNMSM} &= L_{SM} + L_{DM} + L_{vR} + L_{Infration} + L_{CC} + L_{GCU} \\ L_{GCU} &= M_3 \lambda_3^2 + M_2 \lambda_2^2 + M_{L_i} \overline{L_i} L_i + y_L L \widetilde{H} E + \overline{y_L} \overline{L}^{\dagger} H^{\dagger} E \end{split}$$

•SU(3) & SU(2) adjoint fermion +  $(L+\overline{L})\times n$  (MSSM like)

 $L_{NNMSM} = L_{SM} + L_{DM} + L_{vR} + L_{Infration} + L_{CC} + L_{GCU}$  $L_{GCU} = M_3 \lambda_3^2 + M_2 \lambda_2^2 + M_{L_i} \overline{L_i} L_i + y_L L \widetilde{H} E + \overline{y_L} \overline{L}^{\dagger} H^{\dagger} E$ 

•SU(3) & SU(2) adjoint fermion + (L+L)×n (MSSM like) •n=1: no GCU





 $L_{NNMSM} = L_{SM} + L_{DM} + L_{vR} + L_{Infration} + L_{CC} + L_{GCU}$  $L_{GCU} = M_3 \lambda_3^2 + M_2 \lambda_2^2 + M_{L_i} \overline{L_i} L_i + y_L L \widetilde{H} E + \overline{y_L} \overline{L}^{\dagger} H^{\dagger} E$ 

•SU(3) & SU(2) adjoint fermion +  $(L+\overline{L})\times n$  (MSSM like)

On=2: good! with <u>10<sup>3</sup> TeV  $\Lambda_{2,3}$  & L,  $\overline{L}$  stable in renormalized OPs</u>

 $L_{NNMSM} = L_{SM} + L_{DM} + L_{vR} + L_{Infration} + L_{CC} + L_{GCU}$  $L_{GCU} = M_3 \lambda_3^2 + M_2 \lambda_2^2 + M_{L_i} \overline{L_i} L_i + y_L L \widetilde{H} E + \overline{y_L} \overline{L}^{\dagger} H^{\dagger} E$ 

•SU(3) & SU(2) adjoint fermion +  $(L+\overline{L})\times n$  (MSSM like)

 $\rightarrow$  let us consider <u>low reheating temperature</u>

 $T_R < 10^3 \text{ TeV}/40 \sim 25 \text{ TeV}$ 

their productions as particles are very few -> negligible

 $(L, \overline{L} \text{ can also decay to leptons through Yukawa ints.})$ 

cf.) when N' (light Z<sub>2</sub>-odd singlet) is introduced,  $\Lambda$  can be decay through dim6 OP as QAQN'/ $\Lambda^2$  but,  $\Lambda < 10^{13}$  GeV for decay before BBN (1s), this scale is unwanted additional scale.

Next to New Minimal SM:

$$\begin{split} L_{NNMSM} &= L_{SM} + L_{DM} + L_{vR} + \underline{L_{Infration}} + L_{CC} + L_{GCU} \\ L_{SM} \supset -\lambda (|H|^2 - v^2)^2 \\ L_{DM} &= -m_s^2 S^2 - k |H|^2 S^2 - \lambda_s S^4 \\ L_{vR} &= -M \overline{N^c} N + y_v L \widetilde{H} \overline{N} \\ \bigstar L_{Infration} &= -B \varphi^4 \bigg[ \ln \bigg( \frac{\varphi^2}{\sigma^2} \bigg) - \frac{1}{2} \bigg] - B \sigma^4 - \mu_1 \varphi |H|^2 - \kappa_H \varphi^2 |H|^2 - \kappa_S \varphi^2 S^2 \\ L_{CC} &= (2.3 \times 10^{-3} eV)^4 \\ + h.c. + \text{Kinetic terms} \\ L_{GCU} &= M_3 \lambda_3^2 + M_2 \lambda_2^2 + M_{L_i} \overline{L_i} L_i + y_L L \widetilde{H} E + y_L \overline{L}^{\dagger} H^{\dagger} E \end{split}$$

# $\Rightarrow$ Inflation sector in NNMSM:

$$L_{NNMSM} = L_{SM} + L_{DM} + L_{vR} + \underline{L_{Infration}} + L_{CC} + \underline{L_{GCU}}$$
$$L_{Infration} = -B\varphi^{4} \left[ \ln \left( \frac{\varphi^{2}}{\sigma^{2}} \right) - \frac{1}{2} \right] - B\sigma^{4} - \mu_{1}\varphi |H|^{2} - \kappa_{H}\varphi^{2} |H|^{2} - \kappa_{S}\varphi^{2}S^{2}$$

### -consistent with $T_R < 25$ TeV (CW-type inflation model)

•In NMSM,  $L_{Inflation}$ =-m<sup>2</sup> $\phi^2$ - $\mu\phi^3$ - $\kappa\phi^4$  (Chaotic Inflation model), (e-folds N~60 is consistent with today's cosmological observations ( $\mu \doteq \kappa \doteq 0$ ))

but, today's cosmological observations is not consistent with  $T_R < 25$  TeV (small e-folds), so it is no good.

# ☆Inflation sector in NNMSM:

 $L_{NNMSM} = L_{SM} + L_{DM} + L_{vR} + L_{Infration} + L_{CC} + L_{GCU}$  $L_{Infration} = -B\varphi^{4} \left[ \ln\left(\frac{\varphi^{2}}{\sigma^{2}}\right) - \frac{1}{2} \right] - B\sigma^{4} - \mu_{1}\varphi |H|^{2} - \kappa_{H}\varphi^{2} |H|^{2} - \kappa_{S}\varphi^{2}S^{2}$ 

Set tiny for slow-row & not affect RGE

### consistent with T<sub>R</sub><25 TeV (CW-type inflation model)</li>

•In NMSM,  $L_{Inflation}$ =-m<sup>2</sup> $\phi^2$ - $\mu\phi^3$ - $\kappa\phi^4$  (Chaotic Inflation model), (e-folds N~60 is consistent with today's cosmological observations ( $\mu \doteq \kappa \doteq 0$ ))

but, today's cosmological observations is not consistent with  $T_R < 25$  TeV (small e-folds), so it is no good.

Next to New Minimal SM:

$$\begin{split} L_{NNMSM} &= L_{SM} + L_{DM} + \underline{L}_{vR} + L_{Infration} + L_{CC} + \underline{L}_{GCU} \\ L_{SM} \supset -\lambda (|H|^2 - v^2)^2 \\ L_{DM} &= -m_s^2 S^2 - k |H|^2 S^2 - \lambda_s S^4 \\ \bigstar \underline{L}_{vR} &= -M \overline{N^c} N + y_v L \widetilde{H} \overline{N} \\ L_{hfration} &= -B \varphi^4 \bigg[ \ln \bigg( \frac{\varphi^2}{\sigma^2} \bigg) - \frac{1}{2} \bigg] - B \sigma^4 - \mu_1 \varphi |H|^2 - \kappa_H \varphi^2 |H|^2 - \kappa_S \varphi^2 S^2 \\ L_{CC} &= (2.3 \times 10^{-3} eV)^4 \\ &\qquad + \text{h.c. + Kinetic terms} \\ L_{GCU} &= M_3 \lambda_3^2 + M_2 \lambda_2^2 + M_{L_i} \overline{L_i} L_i + y_L L \widetilde{H} E + y_L \overline{L}^{\dagger} H^{\dagger} E \end{split}$$

-minimal setup is introducing two  $v_R$ 

 $\rightarrow$  lightest v is massless

-minimal setup is introducing two  $v_R$ 

 $\rightarrow$  lightest v is massless

•BAU must work under low  $T_R$  (< 25 TeV)

 $\rightarrow$  ex). resonant leptogenesis

-minimal setup is introducing two  $v_R$ 

 $\rightarrow$  lightest v is massless

•BAU must work under low  $T_R$  (< 25 TeV)

 $\rightarrow$  ex). resonant leptogenesis

 $\rightarrow$  mass of v\_R < 25 TeV

-minimal setup is introducing two  $v_R$ 

- $\rightarrow$  lightest v is massless
- •BAU must work under low  $T_R$  (< 25 TeV)
  - $\rightarrow$  ex). resonant leptogenesis

 $\rightarrow$  mass of v<sub>R</sub> < 25 TeV  $\rightarrow$  Yv < 10<sup>-5</sup>

 $\cdot$ minimal setup is introducing two v<sub>R</sub>

 $\rightarrow$  lightest v is massless

- •BAU must work under low  $T_R$  (< 25 TeV)
  - $\rightarrow$  ex). resonant leptogenesis

 $\rightarrow$  mass of v<sub>R</sub> < 25 TeV  $\rightarrow$  Vv < 10<sup>-5</sup>  $\rightarrow$  negligible in RGE of  $\lambda$ 

Next to New Minimal SM:

$$\begin{split} L_{NNMSM} &= L_{SM} + L_{DM} + L_{vR} + L_{Infration} + L_{CC} + L_{GCU} \\ L_{SM} \supset -\lambda (|H|^2 - v^2)^2 \\ \bigstar L_{DM} &= -m_s^2 S^2 - k |H|^2 S^2 - \lambda_s S^4 \\ L_{vR} &= -M \overline{N^c} N + y_v L \widetilde{H} \overline{N} \\ L_{Infration} &= -B \varphi^4 \bigg[ \ln \bigg( \frac{\varphi^2}{\sigma^2} \bigg) - \frac{1}{2} \bigg] - B \sigma^4 - \mu_1 \varphi |H|^2 - \kappa_H \varphi^2 |H|^2 - \kappa_S \varphi^2 S^2 \\ L_{CC} &= (2.3 \times 10^{-3} eV)^4 \\ &\qquad + h.c. + \text{Kinetic terms} \\ L_{GCU} &= M_3 \lambda_3^2 + M_2 \lambda_2^2 + M_{L_i} \overline{L_i} L_i + y_L L \widetilde{H} E + y_L \overline{L}^{\dagger} H^{\dagger} E \end{split}$$

 $\bigstar DM \text{ sector & vacuum in NNMSM:}$   $L_{NNMSM} = L_{SM} + L_{DM} + L_{vR} + L_{Infration} + L_{CC} + L_{GCU}$   $L_{SM} \supset -\lambda(|H|^2 - v^2)^2$   $L_{DM} = -m_s^2 \underline{S}^2 - k |H|^2 \underline{S}^2 - \lambda_s \underline{S}^4 \leftarrow \text{real scalar S is DM } [Z_2 \text{-odd (stable)}]$ 

$$\bigstar DM \text{ sector } \& \text{ vacuum in NNMSM:}$$

$$L_{NNMSM} = \underline{L_{SM}} + \underline{L_{DM}} + L_{vR} + L_{Infration} + L_{CC} + L_{GCU}$$

$$L_{SM} \supset -\lambda(|H|^2 - v^2)^2$$

$$L_{DM} = -m_s^2 \underline{S}^2 - k |H|^2 \underline{S}^2 - \lambda_s \underline{S}^4 \leftarrow \text{real scalar S is DM [Z_2-odd (stable)]}$$

<u>DM relic density depends on  $\lambda \& k \pmod{\Lambda_s}$ </u>



$$\bigstar DM \text{ sector } \& \text{ vacuum in NNMSM:}$$

$$L_{NNMSM} = \underline{L_{SM}} + \underline{L_{DM}} + L_{vR} + L_{Infration} + L_{CC} + L_{GCU}$$

$$L_{SM} \supset -\lambda(|H|^2 - v^2)^2$$

$$L_{DM} = -m_S^2 \underline{S}^2 - k |H|^2 \underline{S}^2 - \lambda_S \underline{S}^4 \leftarrow \text{real scalar S is DM } [Z_2 \text{-odd (stable)}]$$

DM relic density depends on  $\Lambda \& k \pmod{\Lambda_s} \& \text{ stability-triviality do } Y_+, [M_t = 173.5 \pm 1.4 \text{ GeV}]$ 



$$(4\pi)^2 \frac{d\lambda}{dt} = 12\lambda^2 + 12\lambda y^2 - 12y^4 - 3\lambda(g'^2 + 3g^2) + \frac{3}{4} \left[ 2g^4 + (g'^2 + g^2)^2 \right] + k^2,$$





$$(4\pi)^2 \frac{d\lambda}{dt} = 12\lambda^2 + 12\lambda y^2 - 12y^4 - 3\lambda(g'^2 + 3g^2) + \frac{3}{4} \left[ 2g^4 + (g'^2 + g^2)^2 \right] + k^2,$$





S

$$(4\pi)^2 \frac{d\lambda}{dt} = \underline{12\lambda^2 + 12\lambda y^2 - 12y^4} - 3\lambda(g'^2 + 3g^2) + \frac{3}{4} \left[ 2g^4 + (g'^2 + g^2)^2 \right] + k^2,$$

#### DM relic density depends on $\lambda \& k$ (not $\Lambda_s$ ) & stability-triviality do $Y_{t}$ , [M<sub>t</sub> = 173.5 ± 1.4 GeV]





<u>DM relic density depends on  $\lambda \& k$  (not  $\Lambda_s$ ) & stability-triviality do  $Y_{+}$ , [M<sub>t</sub> = 173.5 ± 1.4 GeV]</u>



















$$(4\pi)^{2} \frac{d\lambda}{dt} = \underline{12\lambda^{2} + 12\lambda y^{2} - 12y^{4}} - 3\lambda(g'^{2} + 3g^{2}) + \frac{3}{4} \left[ 2g^{4} + (g'^{2} + g^{2})^{2} \right] + \underline{k^{2}},$$

$$\lim_{small m_{s} \to blow up \to triviality} H^{2} + \underbrace{k^{2} - \frac{5}{k}}_{H^{2}} + \underbrace{k^{2} - \frac{5}{k}} + \underbrace{k^{2} - \frac{5$$

#### DM relic density depends on $\lambda \& k$ (not $\Lambda_s$ ) & stability-triviality do $Y_{+}$ , [M<sub>t</sub> = 173.5 - 1.4 GeV]



$$(4\pi)^{2} \frac{d\lambda}{dt} = \underline{12\lambda^{2} + 12\lambda y^{2} - \underline{12y^{4}} - 3\lambda(g'^{2} + 3g^{2}) + \frac{3}{4} \left[ 2g^{4} + (g'^{2} + g^{2})^{2} \right] + \underline{k^{2}},$$

$$\lim_{small m_{s} \to blow up \to triviality} H^{2} + \underbrace{k^{2} - \underbrace{k}_{small m_{s} \to blow up \to triviality}_{H_{small m_{s} \to blow up \to triviality}} H^{2} + \underbrace{k^{2} - \underbrace{k}_{small m_{s} \to blow up \to triviality}_{H_{small m_{s} \to blow up \to triviality}} H^{2} + \underbrace{k^{2} - \underbrace{k}_{small m_{s} \to blow up \to triviality}_{H_{small m_{s} \to blow up \to triviality}} H^{2} + \underbrace{k^{2} - \underbrace{k}_{small m_{s} \to blow up \to triviality}_{H_{small m_{s} \to blow up \to triviality}} H^{2} + \underbrace{k^{2} - \underbrace{k}_{small m_{s} \to blow up \to triviality}_{H_{small m_{s} \to blow up \to triviality}} H^{2} + \underbrace{k^{2} - \underbrace{k}_{small m_{s} \to blow up \to triviality}_{H_{small m_{s} \to blow up \to triviality}} H^{2} + \underbrace{k^{2} - \underbrace{k}_{small m_{s} \to blow up \to triviality}_{H_{small m_{s} \to blow up \to triviality}} H^{2} + \underbrace{k^{2} - \underbrace{k}_{small m_{s} \to blow up \to triviality}_{H_{small m_{s} \to blow up \to triviality}} H^{2} + \underbrace{k^{2} - \underbrace{k}_{small m_{s} \to blow up \to triviality}_{H_{small m_{s} \to blow up \to triviality}} H^{2} + \underbrace{k^{2} - \underbrace{k}_{small m_{s} \to blow up \to triviality}_{H_{small m_{s} \to blow up}_{H_{small m_{s} \to blow up \to triviality}_{H_{small m_{s} \to blow up}_{H_{small m_{s} \to blow up}_$$

<u>DM relic density depends on  $\lambda \& k$  (not  $\Lambda_s$ )</u> & <u>stability-triviality do  $Y_{+}$ , [M<sub>t</sub> = 173.5 ± ± ± ± GeV]</u>



$$(4\pi)^{2} \frac{d\lambda}{dt} = \underline{12\lambda^{2} + 12\lambda y^{2} - \underline{12y^{4}} - 3\lambda(g'^{2} + 3g^{2}) + \frac{3}{4} \left[ 2g^{4} + (g'^{2} + g^{2})^{2} \right] + \underline{k^{2}},$$

$$\lim_{small m_{s} \to blow up \to triviality} H^{1} = -\underline{m_{s}^{2}S^{2} - \underline{k}} H^{1^{2}} S^{2} - \underline{\lambda_{s}} S^{4}$$

$$H^{1} = -\underline{m_{s}^{2}S^{2} - \underline{k}} H^{1^{2}} S^{2} - \underline{\lambda_{s}} S^{4}$$

<u>DM relic density depends on  $\lambda \& k$  (not  $\Lambda_s$ )</u> & <u>stability-triviality do  $Y_{+}$ , [M<sub>t</sub> = 173.5 ± ± ± ± GeV]</u>










$$(4\pi)^{2} \frac{d\lambda}{dt} = \underline{12\lambda^{2} + 12\lambda y^{2} - 12y^{4} - 3\lambda(g'^{2} + 3g^{2}) + \frac{3}{4} \left[ 2g^{4} + (g'^{2} + g^{2})^{2} \right] + k^{2}},$$

$$\lim_{small m_{s} \to blow up \to triviality} H^{2} = -\underline{m}_{s}^{2}S^{2} - \underline{k} |H|^{2} S^{2} - \underline{\lambda}_{s}S^{4}$$

$$H^{2} = -\underline{m}_{s}^{2}S^{2} - \underline{k} |H|^{2} S^{2} - \underline{\lambda}_{s}S^{4}$$

DM relic density depends on  $\Lambda \& k \pmod{\Lambda_s} \& stability-triviality do Y_+, [M_t = 173.5 + 1.4 GeV]$ 













 $\heartsuit$  An example of RGE running

$$\begin{split} &(4\pi)^2 \frac{d\lambda}{dt} &= \underline{12\lambda^2 + 12\lambda y^2 - 12y^4 - 3\lambda (g'^2 + 3g^2) + \frac{3}{4} \left[ 2g^4 + (g'^2 + g^2)^2 \right] + k^2, \\ &(4\pi)^2 \frac{dk}{dt} &= \underline{k} \left[ 4k + 6\lambda + \lambda_S + 6y^2 - \frac{3}{2} (g'^2 + 3g^2) \right], \\ &(4\pi)^2 \frac{d\lambda_S}{dt} &= \underline{3\lambda_S^2 + 12k^2}. \end{split}$$



$$L_{DM} = -m_{S}^{2}S^{2} - k |H|^{2} S^{2} - \lambda_{S}S^{4}$$

 $\heartsuit$  An example of RGE running



# §3 summary



still no evidence of BSM, but problems exist in SM

(rg

win

win

alter of

w

still no evidence of BSM, but problems exist in SM

 $\rightarrow$  new minimal SM (DM, inflation, v mass) [SM + S(DM) +  $\varphi$ (Inf) +  $v_R \times 2$ ]

still no evidence of BSM, but problems exist in SM

 $\rightarrow$  new minimal SM (DM, inflation, v mass) [SM + S(DM) +  $\varphi$ (Inf) +  $v_R \times 2$ ]

 $\rightarrow$  next to NMSM (+GCU) [NMSM +  $\Lambda_{2,3}$  + (L+L) ×2]

- still no evidence of BSM, but problems exist in SM
  - $\rightarrow$  new minimal SM (DM, inflation, v mass) [SM + S(DM) +  $\varphi$ (Inf) +  $v_R \times 2$ ]
  - $\rightarrow$  next to NMSM (+GCU) [NMSM +  $\Lambda_{2,3}$  + (L+L) ×2]
- NNMSM

- still no evidence of BSM, but problems exist in SM
  - $\rightarrow$  new minimal SM (DM, inflation, v mass) [SM + S(DM) +  $\varphi$ (Inf) +  $v_R \times 2$ ]
  - $\rightarrow$  next to NMSM (+GCU) [NMSM +  $\Lambda_{2,3}$  + (L+L) ×2]
- NNMSM
  - proton decay (p-> $\pi^0 e^+$ ) will be observed at HK.

- still no evidence of BSM, but problems exist in SM
  - $\rightarrow$  new minimal SM (DM, inflation, v mass) [SM + S(DM) +  $\phi$ (Inf) +  $v_R \times 2$ ]
  - $\rightarrow$  next to NMSM (+GCU) [NMSM +  $\Lambda_{2,3}$  + (L+L) ×2]
- · NNMSM
  - proton decay (p-> $\pi^0 e^+$ ) will be observed at HK.
  - low  $T_R$  (< 25 TeV)  $\rightarrow$  low energy baryogenesis (ex. resonant leptogenesis)

- still no evidence of BSM, but problems exist in SM
  - $\rightarrow$  new minimal SM (DM, inflation, v mass) [SM + S(DM) +  $\phi$ (Inf) +  $v_R \times 2$ ]
  - $\rightarrow$  next to NMSM (+GCU) [NMSM +  $\Lambda_{2,3}$  + (L+L) ×2]
- · NNMSM
  - proton decay (p-> $\pi^0e^+$ ) will be observed at HK.
  - low T<sub>R</sub> (< 25 TeV)  $\rightarrow$  low energy baryogenesis (ex. resonant leptogenesis)
  - consistent with DM relic density &  $\lambda^\prime s$  stability and non triviality conditions

- still no evidence of BSM, but problems exist in SM
  - $\rightarrow$  new minimal SM (DM, inflation, v mass) [SM + S(DM) +  $\varphi$ (Inf) +  $v_R \times 2$ ]
  - $\rightarrow$  next to NMSM (+GCU) [NMSM +  $\Lambda_{2,3}$  + (L+L) ×2]
- NNMSM
  - proton decay (p-> $\pi^0 e^+$ ) will be observed at HK.
  - low  $T_R$  (< 25 TeV)  $\rightarrow$  low energy baryogenesis (ex. resonant leptogenesis)
  - consistent with DM relic density &  $\lambda^\prime s$  stability and non triviality conditions



- still no evidence of BSM, but problems exist in SM
  - $\rightarrow$  new minimal SM (DM, inflation, v mass) [SM + S(DM) +  $\varphi$ (Inf) +  $v_R \times 2$ ]
  - $\rightarrow$  next to NMSM (+GCU) [NMSM +  $\Lambda_{2,3}$  + (L+L) ×2]
- · NNMSM
  - proton decay (p-> $\pi^0 e^+$ ) will be observed at HK.
  - low  $T_R$  (< 25 TeV)  $\rightarrow$  low energy baryogenesis (ex. resonant leptogenesis)
  - consistent with DM relic density &  $\lambda^\prime s$  stability and non triviality conditions



- still no evidence of BSM, but problems exist in SM
  - $\rightarrow$  new minimal SM (DM, inflation, v mass) [SM + S(DM) +  $\varphi$ (Inf) +  $v_R \times 2$ ]
  - $\rightarrow$  next to NMSM (+GCU) [NMSM +  $\Lambda_{2,3}$  + (L+L) ×2]
- NNMSM
  - proton decay (p-> $\pi^0 e^+$ ) will be observed at HK.
  - low  $T_R$  (< 25 TeV)  $\rightarrow$  low energy baryogenesis (ex. resonant leptogenesis)
  - consistent with DM relic density &  $\lambda^\prime s$  stability and non triviality conditions



- still no evidence of BSM, but problems exist in SM
  - $\rightarrow$  new minimal SM (DM, inflation, v mass) [SM + S(DM) +  $\varphi$ (Inf) +  $v_R \times 2$ ]
  - $\rightarrow$  next to NMSM (+GCU) [NMSM +  $\Lambda_{2,3}$  + (L+L) ×2]
- NNMSM
  - proton decay (p-> $\pi^0 e^+$ ) will be observed at HK.
  - low  $T_R$  (< 25 TeV)  $\rightarrow$  low energy baryogenesis (ex. resonant leptogenesis)
  - consistent with DM relic density &  $\lambda^\prime s$  stability and non triviality conditions



- still no evidence of BSM, but problems exist in SM
  - $\rightarrow$  new minimal SM (DM, inflation, v mass) [SM + S(DM) +  $\phi$ (Inf) +  $v_R \times 2$ ]
  - $\rightarrow$  next to NMSM (+GCU) [NMSM +  $\Lambda_{2,3}$  + (L+L) ×2]
- NNMSM
  - proton decay (p-> $\pi^0 e^+$ ) will be observed at HK.
  - low  $T_R$  (< 25 TeV)  $\rightarrow$  low energy baryogenesis (ex. resonant leptogenesis)
  - consistent with DM relic density &  $\lambda^\prime s$  stability and non triviality conditions



# discussions

- → other setup scenarios (R. Takahashi's talk yesterday) [NNMSM-II]
  - $M_3 \neq M_2$  & no need of  $(L + \overline{L}) \times 2$

# discussions

- → other setup scenarios (R. Takahashi's talk yesterday) [NNMSM-II]
  - $M_3 \neq M_2$  & no need of  $(L + \overline{L}) \times 2$



# discussions



| ♡ DOF                                                                                                                               |       |
|-------------------------------------------------------------------------------------------------------------------------------------|-------|
| • NMSM: DM, inflation, v mass                                                                                                       |       |
| $SM + S(1) + \phi(1) + v_R \times 2(2 \times 2)$                                                                                    | (+6)  |
| • NNMSM: + GCU                                                                                                                      |       |
| $\int \cdot \text{NNMSM-I: NMSM} + \Lambda_3 (8 \times 2) + \Lambda_2 (3 \times 2) + [L,L] \times 2 (2 \times 2 \times 2 \times 2)$ | (+38) |
| - NNMSM-II: NMSM + $\lambda_3$ (8×2) + $\lambda_2$ (3×2)                                                                            | (+22) |
| • NNMSM-TTT: NMSM + $\lambda_{2}$ (8×2) + $\lambda_{2}$ (3×2×2) - $v_{2}$ (2×2)                                                     | (+24) |

DOF: SM < NMSM < NNMSM-II < NNMSM-III < NNMSM-I





(+24)

• NNMSM-III: NMSM +  $\lambda_3$  (8×2) +  $\lambda_2$  (3×2×2) -  $v_R$  (2×2)



### $\heartsuit$ NNMSM-IIa (M\_{3i}=M\_{2j}) other non-minimum setup possibilities

| $N_{\lambda_3}$ | $N_{\lambda_2}$     | $M_{NP}$ [GeV]                  | $\Lambda_{ m GCU}$ [10 <sup>15</sup> GeV] | $lpha_{ m GCU}^{-1}$ | $\tau$ [10 <sup>33</sup> years]      |  |
|-----------------|---------------------|---------------------------------|-------------------------------------------|----------------------|--------------------------------------|--|
| 1               | 3*                  | $2.21 \times 10^{11}$           | 1.41                                      | 39.3                 | $< 8.2 \times 10^{33}$ years         |  |
| 2               | $1,2^{\dagger}$     | -                               | -                                         | -                    | -                                    |  |
|                 | 3                   | $5.80 \times 10^{9}$            | 99.2                                      | 36.4                 | $2.88^{+3.06}_{-1.19} \times 10^{7}$ |  |
|                 | 4                   | $1.09 \times 10^{12}$           | 5.20                                      | 38.3                 | $1.89^{+2.00}_{-0.78} \times 10^2$   |  |
|                 | $\geq 5^*$          | $\geq 6.47 \times 10^{12}$      | $\leq 1.90$                               | $\geq 39.0$          | $< 8.2 \times 10^{33}$ years         |  |
| 3               | 1-3†                | -                               | -                                         | -                    | -                                    |  |
|                 | 4 <sup>‡</sup>      | $1.33 \times 10^{11}$           | $> M_{\rm pl}$                            | 34.6                 | $> O(10^{35})$ years                 |  |
|                 | 5,6                 | $(0.52 - 1.83) \times 10^{13}$  | (5.20 - 23.0)                             | (37.3 - 38.3)        | $> O(10^{35})$ years                 |  |
|                 | 7                   | $3.47 \times 10^{13}$           | 2.45                                      | 38.8                 | $8.94\substack{+9.49\\-3.68}$        |  |
|                 | $\geq 8^*$          | $\geq 5.11 \times 10^{13}$      | $\leq 1.55$                               | $\geq 39.1$          | $< 8.2 \times 10^{33}$ years         |  |
| 4               | 1-4*                | -                               | -                                         | -                    | -                                    |  |
|                 | 5 <sup>‡</sup>      | $2.74 \times 10^{12}$           | $> M_{ m pl}$                             | 32.8                 | $> \mathcal{O}(10^{35})$ years       |  |
|                 | 6-8                 | $(2.39 - 7.51) \times 10^{13}$  | (5.20 - 99.2)                             | (36.4 - 38.3)        | $> \mathcal{O}(10^{35})$ years       |  |
|                 | 9                   | $9.49 \times 10^{13}$           | 2.85                                      | 38.7                 | $16.4^{+17.4}_{-6.75}$               |  |
|                 | $\geq 10^{\dagger}$ | $\geq 1.11 \times 10^{14}$      | $\leq 1.90$                               | $\geq 39.0$          | $< 8.2 \times 10^{33}$ years         |  |
| 5               | 1-5*                | -                               | -                                         | -                    | -                                    |  |
|                 | 6 <sup>‡</sup>      | $5.11 \times 10^{12}$           | $> M_{\rm pl}$                            | 31.0                 | $> \mathcal{O}(10^{35})$ years       |  |
|                 | 7-10                | $(1.75 - 7.51) \times 10^{14}$  | (5.20 - 417)                              | (35.5 - 38.3)        | $> \mathcal{O}(10^{35})$ years       |  |
|                 | 11                  | $1.85 \times 10^{14}$           | 3.15                                      | 38.7                 | $24.6^{+20.1}_{-10.1}$               |  |
|                 | 12                  | $1.93 \times 10^{14}$           | 2.20                                      | 38.9                 | $5.76^{+6.61}_{-2.37}$               |  |
|                 | $\geq 13^{\dagger}$ | $\geq 1.99 \times 10^{14}$      | $\leq 1.68$                               | $\geq 39.1$          | $< 8.2 \times 10^{33}$ years         |  |
| 6               | 1-6*                | -                               | -                                         | -                    | -                                    |  |
|                 | 7,8‡                | $(4.76 - 8.67) \times 10^{14}$  | $> M_{\rm pl}$                            | (29.3-34.6)          | $> \mathcal{O}(10^{35})$ years       |  |
|                 | 9-12                | $(3.09 - 3.85) \times 10^{14}$  | (5.20 - 99.2)                             | (36.4 - 38.3)        | $> \mathcal{O}(10^{35})$ years       |  |
|                 | 13                  | $2.99 \times 10^{14}$           | 3.39                                      | 38.6                 | $32.8^{+34.9}_{-13.5}$               |  |
|                 | 14                  | $2.92 \times 10^{14}$           | 2.45                                      | 38.8                 | 8.90+3.66                            |  |
|                 | $\geq 15^{\dagger}$ | $\geq 2.86 \times 10^{14}$      | $\leq 1.90$                               | $\geq 39.0$          | $< 8.2 \times 10^{33}$ years         |  |
| 7               | 1-7*                | -                               | -                                         | -                    | -                                    |  |
|                 | 8,9‡                | $(0.204 - 1.34) \times 10^{16}$ | $> M_{\rm pl}$                            | (27.7 - 33.7)        | $> \mathcal{O}(10^{35})$ years       |  |
|                 | 10-14               | $(0.462 - 1.04) \times 10^{15}$ | (5.20 - 259)                              | (35.8 - 38.3)        | $> \mathcal{O}(10^{35})$ years       |  |
|                 | 15                  | $4.27 \times 10^{14}$           | 3.57                                      | 38.6                 | $40.8^{+43.3}_{-16.8}$               |  |
|                 | 16                  | $4.02 \times 10^{14}$           | 2.66                                      | 38.8                 | $12.5^{+13.5}_{-5.14}$               |  |
|                 | 17                  | $3.83 \times 10^{14}$           | 2.10                                      | 38.9                 | $4.83^{+0.13}_{-1.99}$               |  |
|                 | $\geq 18^{\dagger}$ | $\leq 3.68 \times 10^{14}$      | $\leq 1.74$                               | $\geq 39.1$          | $< 8.2 \times 10^{33}$ years         |  |



+ : realize GCU above MP

\* : ruled out by p-decay

+ : not realize GCU

## $\heartsuit$ NNMSM-IIb (M<sub>3i</sub> ≠ M<sub>2j</sub>) other non-minimum setup possibilities

| N(M)                                                | N(M)                                                                                                        | A [10 <sup>15</sup> C <sub>0</sub> V] | a <sup>-1</sup>    |                                 |
|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------|---------------------------------|
| $\frac{N_{\lambda_3}(M_{3,i})}{1}$                  | $IV_{\lambda_2}(M_{2,i})$                                                                                   | AGCU [10 <sup>-+</sup> GeV]           | $\alpha_{\rm GCU}$ |                                 |
| $1 (M_3 \lesssim 4 \times 10^9 \text{ GeV})$        | $3 (M_{2,i} \lesssim 1.08 \times 10^{11} \text{ GeV})$                                                      | 2.77                                  | 38.8               |                                 |
|                                                     | $4 (M_{2,i} \lesssim 1.36 \times 10^{12} \text{ GeV})$                                                      |                                       |                    |                                 |
|                                                     | $5 (M_{2,i} \lesssim 6.26 \times 10^{12} \text{ GeV})$                                                      |                                       |                    |                                 |
|                                                     | $6 (M_{2,i} \lesssim 1.73 \times 10^{13} \text{ GeV})$                                                      |                                       |                    |                                 |
|                                                     | $7 (M_{2,i} \lesssim 3.57 \times 10^{13} \text{ GeV})$                                                      |                                       |                    |                                 |
|                                                     | $8 (M_{2,i} \lesssim 6.14 \times 10^{13} \text{ GeV})$                                                      |                                       |                    |                                 |
| 0/14 < 0 = 1012 (1 17)                              | $9 (M_{2,i} \lesssim 9.39 \times 10^{15} \text{ GeV})$                                                      | 0.01                                  | 00.7               |                                 |
| $2 (M_{3,i} \lesssim 3 \times 10^{12} \text{ GeV})$ | $1^{*} (M_{2,i} \lesssim 126 \text{ GeV})$                                                                  | 2.91                                  | 38.7               |                                 |
|                                                     | $2(M_{2,i} \lesssim 6.08 \times 10^{\circ} \text{ GeV})$                                                    |                                       |                    |                                 |
|                                                     | $3 (M_{2,i} \gtrsim 1.03 \times 10^{11} \text{ GeV})$                                                       |                                       |                    |                                 |
|                                                     | $4 (M_{2,i} \gtrsim 1.34 \times 10^{12} \text{ GeV})$                                                       |                                       |                    |                                 |
|                                                     | $5 (M_{2,i} \gtrsim 6.22 \times 10^{12} \text{ GeV})$                                                       |                                       |                    |                                 |
|                                                     | $0 (M_{2,i} \gtrsim 1.73 \times 10^{13} \text{ GeV})$                                                       |                                       |                    |                                 |
|                                                     | $T(M_{2,i} \gtrsim 3.01 \times 10^{10} \text{ GeV})$                                                        |                                       |                    |                                 |
|                                                     | $8 (M_{2,i} \gtrsim 0.20 \times 10^{-6} \text{ GeV})$                                                       |                                       |                    |                                 |
| $2(M_{\odot} \leq 2 \times 10^{13} \text{ CeV})$    | $9(M_{2,i} \gtrsim 9.00 \times 10^{-6} \text{GeV})$                                                         |                                       |                    |                                 |
| $3(123,i) \gtrsim 3 \times 10^{-1} \text{GeV}$      | $1 (M_{2,i} \gtrsim 124 \text{ GeV})$<br>$2 (M_{\odot} \le 6.05 \times 10^8 \text{ CeV})$                   |                                       |                    |                                 |
|                                                     | $2 (M_{2,i} \gtrsim 0.05 \times 10^{-10} \text{ GeV})$<br>$3 (M_{2,i} \le 1.03 \times 10^{11} \text{ GeV})$ |                                       |                    |                                 |
|                                                     | $4 (M_{2,i} \lesssim 1.03 \times 10^{-12} \text{ GeV})$                                                     |                                       |                    |                                 |
|                                                     | $5 (M_{2,i} \lesssim 6.22 \times 10^{12} \text{ GeV})$                                                      |                                       |                    | <b>.</b>                        |
|                                                     | $6 (M_{2,i} \gtrsim 0.22 \times 10^{-3} \text{ GeV})$                                                       |                                       |                    | * : ruled out by collider direc |
|                                                     | $7 (M_{2,i} \leq 3.62 \times 10^{13} \text{ GeV})$                                                          |                                       |                    | formion experiments             |
|                                                     | $\frac{1}{8} (M_{2,i} \leq 6.27 \times 10^{13} \text{ GeV})$                                                |                                       |                    | rermon experiments              |
|                                                     | $9 (M_{2,i} \leq 9.61 \times 10^{13} \text{ GeV})$                                                          |                                       |                    |                                 |
| $4 (M_{3,i} \le 9 \times 10^{13} \text{ GeV})$      | $1^*$ ( $M_{2,i} \leq 78.3 \text{ GeV}$ )                                                                   | 3.27                                  | 38.6               | - 7                             |
| ( ), ~                                              | $2 (M_{2i} \leq 5.06 \times 10^8 \text{ GeV})$                                                              |                                       |                    | 50 9                            |
|                                                     | $3 (M_{2i} \lesssim 9.42 \times 10^{10} \text{ GeV})$                                                       |                                       |                    | LAXAL RA                        |
|                                                     | $4 (M_{2,i} \lesssim 1.28 \times 10^{12} \text{ GeV})$                                                      |                                       |                    |                                 |
|                                                     | $5 (M_{2,i} \lesssim 6.16 \times 10^{12} \text{ GeV})$                                                      |                                       |                    | A AN AN AREAS                   |
|                                                     | $6 (M_{2,i} \lesssim 1.75 \times 10^{13} \text{ GeV})$                                                      |                                       |                    | and the second                  |
|                                                     | $7 (M_{2,i} \lesssim 3.70 \times 10^{13} \text{ GeV})$                                                      |                                       |                    | Can Bernand                     |
|                                                     | $8 \ (M_{2,i} \lesssim 6.48 \times 10^{13} \text{ GeV})$                                                    |                                       |                    | A CHEEK CHEEK HAR               |
|                                                     | $9 \ (M_{2,i} \lesssim 1.00 \times 10^{14} \text{ GeV})$                                                    |                                       |                    | STRATE GAR                      |
|                                                     |                                                                                                             |                                       |                    |                                 |