Recent results from ATLAS

Klaus Mönig

on behalf of the

ATLAS collaboration

SCALARS 2013 12-16 September 2013

Warsaw, Poland

Outline

- Introduction
- Scalars we didn't find
- The scalar we found
- Conclusions

ATLAS at the LHC

- Very successful running in 2011 (7 TeV) and 2012 (8 TeV)
- Data taking efficiency in 2012: 93%, 96% of which is used for physics
- Peak luminosity 7.10³³ cm⁻² s⁻¹
- Total data set
 - ◆ 7 TeV: 4.8 fb⁻¹
 - ♦ 8 TeV: 20.7 fb⁻¹
- Main challenge: high pileup

Mean Number of Interactions per Crossing

Scalars

Standard Model measurements

Searches for new phenomena

	ATLAS Exotics	Searches* - 95% CL Lower Limits (Sta	atus: May 2013)
Large ED (ADD) : monoiet + E	L=4.7 fb ⁻¹ . 7 TeV [1210.4491]	4.37 TeV Μ ₀ (δ=2)	
Large ED (ADD) : monophoton + $E_{T,miss}$	L=4.6 fb ⁻¹ , 7 TeV [1209.4625]	1.93 TeV M _D (δ=2)	
Large ED (ADD) : diphoton & dilepton, m	L=4.7 fb ⁻¹ , 7 TeV [1211.1150]	4.18 TeV M _☉ (HLZ δ=	3. NLO) ATLAS
UED : diphoton + $E_{T miss}$	L=4.8 fb ⁻¹ , 7 TeV [1209.0753]	1.40 TeV Compact, scale R ⁻¹	Preliminary
S^1/Z_2 ED : dilepton, m_2	L=5.0 fb ⁻¹ , 7 TeV [1209.2535]	4.71 TeV M _{KK} ~ R ⁻¹	
RS1 : dilepton, m	L=20 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-017]	2.47 TeV Graviton mass (k/M	_{Pl} = 0.1)
RS1 : WW resonance, m _{T bib}	L=4.7 fb ⁻¹ , 7 TeV [1208.2880]	1.23 TeV Graviton mass $(k/M_{\rm Pl} = 0.1)$)``
Bulk RS : ZZ resonance, m	L=7.2 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-150]	850 GeV Graviton mass $(k/M_{Pl} = 1.0)$	$Ldt = (1 - 20) \text{ fb}^{-1}$
RS $q_{\dots} \rightarrow t\bar{t}$ (BR=0.925) : $t\bar{t} \rightarrow l+jets, m$	L=4.7 fb ⁻¹ , 7 TeV [1305.2756]	2.07 TeV g., mass	J · ·
$\widehat{\mathbf{U}}$ ADD $\mathbf{BH}(M_{TH}/M_{p}=3)$: SS dimuon, N_{ch} and	L=1.3 fb ⁻¹ , 7 TeV [1111.0080]	1.25 TeV M _D (δ=6)	is = 7, 8 TeV
ADD BH $(M_{TH}/M_{D}=3)$: leptons + jets, Σp_{T}	L=1.0 fb ⁻¹ , 7 TeV [1204.4646]	1.5 TeV M _D (δ=6)	
Quantum black hole : dijet, F (m)	L=4.7 fb ⁻¹ , 7 TeV [1210.1718]	4.11 TeV M _D (δ=6)	
qqqq contact interaction : $\chi(m_{\perp})$	L=4.8 fb ⁻¹ , 7 TeV [1210.1718]	7.6 TeV A	
ο qqll Cl : ee & μμ, m	L=5.0 fb ⁻¹ , 7 TeV [1211.1150]	13.9	TeV A (constructive int.)
uutt CI : SS dilepton + jets + E _{7 miss}	L=14.3 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-051]	3.3 TeV ∆ (C=1)	
Z' (SSM) : m _{ee(uu}	L=20 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-017]	2.86 TeV Z' mass	
Z' (SSM) : m	L=4.7 fb ⁻¹ , 7 TeV [1210.6604]	1.4 TeV Z' mass	
Z' (leptophobic topcolor) ; $t\bar{t} \rightarrow l+iets, m$	L=14.3 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-052]	1.8 TeV Z' mass	
> W' (SSM) : m _{Te(i}	L=4.7 fb ⁻¹ , 7 TeV [1209.4446]	2.55 TeV W' mass	
W' $(\rightarrow tq, g_{-}=1): m_{tq}$	L=4.7 fb ⁻¹ , 7 TeV [1209.6593]	430 GeV W' mass	
$W'_{R} (\rightarrow tb, LRSM) : m_{+}$	L=14.3 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-050]	1.84 TeV W' mass	
Scalar LQ pair (β=1) : kin. vars. in eeji, evij	L=1.0 fb ⁻¹ , 7 TeV [1112.4828]	660 Gev 1 st gen. LQ mass	
Scalar LQ pair (β =1) : kin. vars. in µµjj, µvjj	L=1.0 fb ⁻¹ , 7 TeV [1203.3172]	685 GeV 2 nd gen. LQ mass	
Scalar LQ pair (β=1) : kin. vars. in ττjj, τvjj	L=4.7 fb ⁻¹ , 7 TeV [1303.0526]	534 GeV 3 rd gen. LQ mass	
4 th generation : t't'→ WbWb	L=4.7 fb ⁻¹ , 7 TeV [1210.5468]	656 GeV ť mass	
4th generation : b'b' \rightarrow SS dilepton + jets + $E_{T_{miss}}$	L=14.3 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-051]	720 GeV b' mass	
Vector-like guark : TT→ Ht+X	L=14.3 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-018]	790 Gev T mass (isospin doublet)	
Vector-like quark : CC, mixa	L=4.6 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-137]	1.12 TeV VLQ mass (charge -1/3, couplin	$g \kappa_{\alpha \Omega} = v / m_{\Omega}$
Excited quarks : γ-jet resonance, m	L=2.1 fb ⁻¹ , 7 TeV [1112.3580]	2.46 TeV q* mass	
ີຮູຮ໌ Excited quarks : dijet resonance, mໍ້	L=13.0 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-148]	3.84 TeV q* mass	
Excited b quark : W-t resonance, m	L=4.7 fb ⁻¹ , 7 TeV [1301.1583]	870 Gev b* mass (left-handed coupling)	
Excited leptons : I-γ resonance, m	L=13.0 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-146]	2.2 TeV I* mass (Λ = m(I*))	
Techni-hadrons (LSTC) : dilepton, m _{ee/uu}	L=5.0 fb ⁻¹ , 7 TeV [1209.2535]	850 GeV ρ_{T}/ω_{T} mass $(m(\rho_{T}/\omega_{T}) - m(\pi_{T}) = M_{\omega})$	
Techni-hadrons (LSTC) : WZ resonance (IvII), m	L=13.0 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-015]	920 GeV ρ_{T} mass $(m(\rho_{T}) = m(\pi_{T}) + m_{W}, m(a_{T})$	$= 1.1 m(\rho_{\tau}))$
Major. neutr. (LRSM, no mixing) : 2-lep + jets	L=2.1 fb ⁻¹ , 7 TeV [1203.5420]	1.5 TeV N mass (m(W) = 2 TeV)	
Heavy lepton N [±] (type III seesaw) : Z-I resonance, m ₂₁	L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-019]	N [±] mass (V ₂ = 0.055, V ₂ = 0.063, V ₂ = 0)	
$\stackrel{\text{\tiny H}}{\approx}$ H^{\pm}_{L} (DY prod., BR($H^{\pm}_{\mu} \rightarrow II$)=1) : SS ee ($\mu\mu$), m^{-1}_{μ}	L=4.7 fb ⁻¹ , 7 TeV [1210.5070]	409 GeV H ^{±±} mass (limit at 398 GeV for μμ)	
Color octet scalar : dijet resonance, m	L=4.8 fb ⁻¹ , 7 TeV [1210.1718]	1.86 TeV Scalar resonance mass	
Multi-charged particles (DY prod.) : highly ionizing tracks	L=4.4 fb ⁻¹ , 7 TeV [1301.5272]	490 GeV mass (q = 4e)	
Magnetic monopoles (DY prod.) : highly ionizing tracks	L=2.0 fb ⁻¹ , 7 TeV [1207.6411]	862 GeV mass	
	10 ⁻¹	1 10) 10 ²
			Mass scale [TeV]

*Only a selection of the available mass limits on new states or phenomena shown

Scalars we didn't find

- If you believe in SUSY <5% of the elementary scalars are found
- SUSY searches going on with full intensity
- Standard inclusive searches continuing
- New developments:
 - ◆ searches using heavy flavour, e.g. $\tilde{g} \rightarrow t\tilde{t}$
 - searches for direct production of heavy squarks (naturalness)
 - searches for electroweak production
 - searches for R-parity violating SUSY

ATLAS SUSY Searches* - 95% CL Lower Limits

Status: SUSY 2013

ATLA	AS Preliminary
$\int \mathcal{L} dt = (4.6 - 22.9) \text{ fb}^{-1}$	\sqrt{s} = 7, 8 TeV

	Model	e, μ, τ, γ	Jets	E_{T}^{miss}	∫£ dt[fb	⁻¹] Mass limit	Reference
Inclusive Searches	$ \begin{array}{l} \text{MSUGRA/CMSSM} \\ \text{MSUGRA/CMSSM} \\ \text{MSUGRA/CMSSM} \\ \overline{q}\widetilde{q}, \overline{q} \rightarrow q \widetilde{\chi}_{1}^{0} \\ \overline{g}\widetilde{g}, \widetilde{g} \rightarrow q \overline{q} \widetilde{\chi}_{1}^{0} \\ \overline{g}\widetilde{g}, \widetilde{g} \rightarrow q q \widetilde{\chi}_{1}^{\pm} \rightarrow q q \mathcal{W}^{\pm} \widetilde{\chi}_{1}^{0} \\ \overline{g}\widetilde{g}, \widetilde{g} \rightarrow q q (\ell \ell / \ell \nu / \nu \nu) \widetilde{\chi}_{1}^{0} \\ \text{GMSB} (\ell \text{NLSP}) \\ \text{GMSB} (\ell \text{NLSP}) \\ \text{GGM} (\text{bino NLSP}) \\ \text{GGM} (\text{higosino-bino NLSP}) \\ \text{GGM} (\text{higgsino-bino NLSP}) \\ \text{GGM} (\text{higgsino-bino NLSP}) \\ \text{GGM} (\text{higgsino-NLSP}) \\ \text{Gravitino LSP} \\ \end{array} $	$\begin{matrix} 0 \\ 1 \ e, \mu \\ 0 \\ 0 \\ 0 \\ 1 \ e, \mu \\ 2 \ e, \mu \\ 2 \ e, \mu \\ 1-2 \ \tau \\ 2 \ \gamma \\ 1 \ e, \mu + \gamma \\ \gamma \\ 2 \ e, \mu \ (Z) \\ 0 \end{matrix}$	2-6 jets 3-6 jets 2-6 jets 2-6 jets 2-6 jets 3-6 jets 0-3 jets 2-4 jets 0-2 jets - 1 b 0-3 jets mono-jet	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 4.7 20.7 4.8 4.8 4.8 5.8 10.5	$\tilde{q}.\tilde{g}$ 1.7 TeV $m(\tilde{q})=m(\tilde{g})$ \tilde{g} 1.2 TeV any $m(\tilde{q})$ \tilde{g} 1.1 TeV any $m(\tilde{q})$ \tilde{g} 1.1 TeV any $m(\tilde{q})$ \tilde{q} 740 GeV $m(\tilde{\chi}_1^0)=0$ GeV \tilde{g} 1.3 TeV $m(\tilde{\chi}_1^0)=0$ GeV \tilde{g} 1.18 TeV $m(\tilde{\chi}_1^0)=0$ GeV \tilde{g} 1.12 TeV $m(\tilde{\chi}_1^0)=0$ GeV \tilde{g} 1.24 TeV $m(\tilde{\chi}_1^0)=0$ GeV \tilde{g} 1.24 TeV $m(\tilde{\chi}_1^0)=0$ GeV \tilde{g} 1.07 TeV $m(\tilde{\chi}_1^0)=0$ SeV \tilde{g} 619 GeV $m(\tilde{\chi}_1^0)=50$ GeV \tilde{g} 619 GeV $m(\tilde{\chi}_1^0)=0$ GeV \tilde{g} 690 GeV $m(\tilde{\chi}_1^0)=200$ GeV \tilde{g} 690 GeV $m(\tilde{H})=200$ GeV \tilde{g} 690 GeV $m(\tilde{H})=200$ GeV \tilde{g} 690 GeV $m(\tilde{H})=200$ GeV	 ATLAS-CONF-2013-047 ATLAS-CONF-2013-062 1308.1841 ATLAS-CONF-2013-047 ATLAS-CONF-2013-047 ATLAS-CONF-2013-047 ATLAS-CONF-2013-062 ATLAS-CONF-2013-062 ATLAS-CONF-2013-026 1208.4688 ATLAS-CONF-2013-026 1209.0753 ATLAS-CONF-2012-144 1211.1167 ATLAS-CONF-2012-152 ATLAS-CONF-2012-147
3 ^{ra} gen. ẽ med.	$\begin{array}{c} \tilde{g} \rightarrow b \bar{b} \tilde{\chi}_{1}^{0} \\ \tilde{g} \rightarrow t \tilde{\iota} \tilde{\chi}_{1}^{0} \\ \tilde{g} \rightarrow t \tilde{\iota} \tilde{\chi}_{1}^{1} \\ \tilde{g} \rightarrow b \tilde{\iota} \tilde{\chi}_{1}^{1} \end{array}$	0 0 0-1 <i>e</i> ,μ 0-1 <i>e</i> ,μ	3 b 7-10 jets 3 b 3 b	Yes Yes Yes Yes	20.1 20.3 20.1 20.1	ğ 1.2 TeV m($\tilde{\chi}_1^0) < 600 \text{ GeV}$ ğ 1.1 TeV m($\tilde{\chi}_1^0) < 350 \text{ GeV}$ ğ 1.34 TeV m($\tilde{\chi}_1^0) < 400 \text{ GeV}$ ğ 1.3 TeV m($\tilde{\chi}_1^0) < 300 \text{ GeV}$	ATLAS-CONF-2013-061 1308.1841 ATLAS-CONF-2013-061 ATLAS-CONF-2013-061
3 ^{ra} gen. squarks direct production	$ \begin{array}{c} \tilde{b}_{1}\tilde{b}_{1}, \tilde{b}_{1} \rightarrow b\tilde{\chi}_{1}^{0} \\ \tilde{b}_{1}\tilde{b}_{1}, \tilde{b}_{1} \rightarrow t\tilde{\chi}_{1}^{0} \\ \tilde{b}_{1}\tilde{b}_{1}, \tilde{b}_{1} \rightarrow t\tilde{\chi}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1}(\text{light}), \tilde{t}_{1} \rightarrow b\tilde{\chi}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1}(\text{light}), \tilde{t}_{1} \rightarrow Wb\tilde{\chi}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1}(\text{nedium}), \tilde{t}_{1} \rightarrow t\tilde{\chi}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1}(\text{nedium}), \tilde{t}_{1} \rightarrow b\tilde{\chi}_{1}^{1} \\ \tilde{t}_{1}\tilde{t}_{1}(\text{neavy}), \tilde{t}_{1} \rightarrow t\tilde{\chi}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1}(\text{neavy}), \tilde{t}_{1} \rightarrow t\tilde{\chi}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1}, \tilde{t}_{1} \rightarrow c\tilde{\chi}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1}, \tilde{t}_{1} \rightarrow c\tilde{\chi}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1}, \tilde{t}_{1} \rightarrow c\tilde{\chi}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{2}\tilde{t}_{2}, \tilde{t}_{2} \rightarrow \tilde{t}_{1} + Z \end{array} $	$\begin{array}{c} 0\\ 2\ e,\mu\ ({\rm SS})\\ 1\mathchar`-2\ e,\mu\\ 2\ e,\mu\\ 2\ e,\mu\\ 0\\ 1\ e,\mu\\ 0\\ 0\\ 0\\ 2\ e,\mu\ (Z)\\ 3\ e,\mu\ (Z) \end{array}$	2 b 0-3 b 1-2 b 0-2 jets 2 jets 2 b 1 b 2 b ono-jet/c-t 1 b 1 b	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.1 20.7 4.7 20.3 20.3 20.1 20.7 20.5 20.3 20.7 20.7	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1308.2631 ATLAS-CONF-2013-007 1208.4305, 1209.2102 ATLAS-CONF-2013-048 ATLAS-CONF-2013-048 ATLAS-CONF-2013-065 1308.2631 ATLAS-CONF-2013-024 ATLAS-CONF-2013-024 ATLAS-CONF-2013-025 ATLAS-CONF-2013-025
EW direct	$ \begin{array}{c} \tilde{\ell}_{L_{\rm L}} \tilde{\ell}_{L,{\rm R}}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\ell} \nu (\ell \tilde{\nu}) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\nu} \nu (\tau \tilde{\nu}) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{0} \rightarrow \ell_{1} \nu \tilde{\ell}_{1} \ell (\tilde{\nu}\nu), \ell \tilde{\nu} \tilde{\ell}_{1} \ell (\tilde{\nu}\nu) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} Z \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} h \tilde{\chi}_{1}^{0} \end{array} $	2 e,μ 2 e,μ 2 τ 3 e,μ 3 e,μ 1 e,μ	0 0 - 0 2 b	Yes Yes Yes Yes Yes Yes	20.3 20.3 20.7 20.7 20.7 20.7 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ATLAS-CONF-2013-049)) ATLAS-CONF-2013-049)) ATLAS-CONF-2013-028)) ATLAS-CONF-2013-028)) ATLAS-CONF-2013-035 upled ATLAS-CONF-2013-035 ATLAS-CONF-2013-035 ATLAS-CONF-2013-035
Long-lived particles	Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^\pm$ Stable, stopped \tilde{g} R-hadron GMSB, stable $\tilde{\tau}, \tilde{\chi}_1^0 \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu})_+ \tau(\epsilon$ GMSB, $\tilde{\chi}_1^0 \rightarrow \gamma \tilde{G}$, long-lived $\tilde{\chi}_1^0$ $\tilde{q}\tilde{q}, \tilde{\chi}_1^0 \rightarrow qq\mu$ (RPV)	Disapp. trk 0 (e, μ) 1-2 μ 2 γ 1 μ , displ. vtx	1 jet 1-5 jets - - -	Yes Yes - Yes -	20.3 22.9 15.9 4.7 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ATLAS-CONF-2013-069 ATLAS-CONF-2013-057 ATLAS-CONF-2013-057 ATLAS-CONF-2013-058 1304.6310 8 GeV ATLAS-CONF-2013-092
RPV	$ \begin{array}{l} LFV pp \rightarrow \widetilde{v}_{\tau} + X, \widetilde{v}_{\tau} \rightarrow e + \mu \\ LFV pp \rightarrow \widetilde{v}_{\tau} + X, \widetilde{v}_{\tau} \rightarrow e(\mu) + \tau \\ Bilinear \ RPV \ CMSSM \\ \widetilde{\chi}_1^+ \widetilde{\chi}_1^-, \widetilde{\chi}_1^+ \rightarrow W \widetilde{\chi}_1^0, \widetilde{\chi}_1^0 \rightarrow ee\widetilde{v}_{\mu}, e\mu \widetilde{v} \\ \widetilde{\chi}_1^+ \widetilde{\chi}_1^-, \widetilde{\chi}_1^+ \rightarrow W \widetilde{\chi}_1^0, \widetilde{\chi}_1^0 \rightarrow \tau \tau \widetilde{v}_e, e\tau \widetilde{v}_1 \\ \widetilde{g} \rightarrow qq \\ \widetilde{g} \rightarrow \widetilde{t}_1 t, \widetilde{\chi}_1 \rightarrow bs \end{array} $	$\begin{array}{c} 2 \ e, \mu \\ 1 \ e, \mu + \tau \\ 1 \ e, \mu \\ e \\ 4 \ e, \mu \\ 3 \ e, \mu + \tau \\ 0 \\ 2 \ e, \mu \left(\text{SS} \right) \end{array}$	- 7 jets - 6-7 jets 0-3 <i>b</i>	- Yes Yes Yes - Yes	4.6 4.6 4.7 20.7 20.7 20.3 20.7	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1212.1272 1212.1272 ATLAS-CONF-2012-140 ATLAS-CONF-2013-036 ATLAS-CONF-2013-036 ATLAS-CONF-2013-091 ATLAS-CONF-2013-007
Other	Scalar gluon pair, sgluon $\rightarrow q\bar{q}$ Scalar gluon pair, sgluon $\rightarrow t\bar{t}$ WIMP interaction (D5, Dirac χ)	$ \begin{array}{c} 0 \\ 2 \\ e, \mu \\ 0 \end{array} $ (SS)	4 jets 1 <i>b</i> mono-jet	- Yes Yes	4.6 14.3 10.5	sgluon 100-287 GeV incl. limit from 1110.2693 sgluon 800 GeV m(χ)<80 GeV, limit of <687 GeV for De M* scale 704 GeV m(χ)<80 GeV, limit of <687 GeV for De	1210.4826 ATLAS-CONF-2013-051 ATLAS-CONF-2012-147
	$\sqrt{s} = 7$ leV 1 full data D	vs = 8 TeV artial data	√s = full	8 IeV data		10^{-1} Mass scale [Te	eV1

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1 σ theoretical signal cross section uncertainty.

mSUGRA/CMSSM limits

m(g)>1.3 TeV
m(q)>1.7 TeV

Gluino limit at large m₀ from 0-11+3b-jet analysis

Squark limit from untagged 0-lepton analysis

Scalars 2013

Searches for direct stop production

- The solution of the hierarchy problem requires light stops
- Most other superpartners are allowed to be heavy
- Dedicated program for stop and sbottom searches going on
- Maximum stop exclusion of 680 GeV, but can be significantly lower depending on mass and mixing parameters

m_t [GeV]

Electroweak production

- Searches for electroweak production give chargino mass limits up to 610 GeV
- The limit on sleptons is ~230 GeV for right-handed sleptons increasing to 330 GeV for I-r mass degenerate
- These limits are only valid for a relatively large mass difference (~100 GeV) between the NLSP and the neutralino
- Stable staus (GMSB) are excluded up to 300 GeV

Scalars 2013

Klaus Mönig - ATLAS results

The scalar we found

- All modes apart from $H \rightarrow \tau \tau$ analyses use the full statistics
- Coupling studies using bosonic modes recently published
- The bosonic modes are also used for spin/CP

Scalars 2013

Klaus Mönig - ATLAS results

$H \rightarrow \gamma \gamma$

High granularity in LAr EM calorimeter allows for mass resolution independent of primary vertex (and pile-up) and suppresses reducible yj-background to 25% level

 Categorisation according to conversion status, p_T, additional jets/leptons increases sensitivity and separates production modes

Scalars 2013

Klaus Mönig -

arxiv:1307.1427

$H \rightarrow \gamma \gamma$ (ii)

- ATLAS sees 7.4σ signal significance (4.3σ exp.)
- This establishes the Higgs in a single channel
- The µ-values for all production modes are slightly high (but compatible with unity)

$$\mu = 1.55 \pm 0.23 (\text{stat})$$

 $\pm 0.15 (\text{syst})$

Differential cross section

atlas-conf-2013-072

15

- The clear signal in H→yy allows the measurement of a differential cross section
- The analysis is done inclusively and dominated by ggF
- Results are presented at the particle level
- There is good agreement with the prediction $P(\chi^2)>0.3$

$H \rightarrow ZZ \rightarrow 4I$

- Almost background free signal, bg mainly irreducible pp→ZZ
- Clear signal, consistent with SM for Z→4I
- Signal significance 6.6σ
 (4.4σ exp.)
- µ=1.5±0.4 consistent with SM prediction

$H \rightarrow WW \rightarrow 2I2v$

- 2 neutrinos → no mass peak→
 need well understood background
- SM WW background can be suppressed by angular correlations of leptons
- Analysis separated in jet multiplicity
- Sensitivity is highest for DF and 0jets, but all jet bins and SF are also considered
- 0 jets: bg. mainly WW
- Significance 3.8σ (3.6σ exp.)

```
\mu = 1.01 \pm 0.21 (\text{stat})
```

427 ±

arxiv:1307.1427

Scalars 2013

Klaus Mönig - ATLAS resu

0.12(syst)

0.19(theo)

VH→Vbb

- ggF H→bb completely buried under QCD bg.
- Can use lepton or high MET signature from VH→Vbb instead
- Enhance signal/bg. by going to boosted topology
- ATLAS finds low value of µ=0.2±0.5±0.4 caused in part by downward fluctuation in 2011 data
- VZ→Vbb seen with 5σ significance and consistent with SM

- Analysis still only on partial dataset
- Split according to τ-decay modes: lvvlvv, hvlvv, hvhv
- Categorisation according to jet-multiplicity, ττ-p_τ
- Mass resolution profits from larger $\tau \tau p_{T} \rightarrow analysis$ more sensitive to VBF
- No conclusive signal yet:
 µ=0.7±0.7

19

Searches for rare modes

- ATLAS searched for several rare modes
- Limits (95% C.L. meas(exp. no Higgs)):
 - ttH (H→γγ): μ<5.3(6.4)
 - ♦ H→µµ: µ<9.8(8.2)</p>
 - $H \rightarrow Z\gamma$: $\mu < 18.2(13.5)$ atlas-conf-2013-009
 - ♦ H→inv.: BR(H→inv)<65%(84%)</p>
 - ★ t→cH: BR(t→cH)<0.83%(0.53%)</p>

Klaus Mönig - ATLAS results

The mass of the Higgs boson

• The mass can be obtained in an (almost) model independent way from the two high resolution channels $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ$

 $m_H = 125.5 \pm 0.2 \pm 0.6 \,\mathrm{GeV}$

Mass difference between the 2InA ATLAS Combined (stat+sys) two modes: Combined (stat only) √s = 7 TeV (Ldt = 4.6-4.8 fb⁻¹ $H \rightarrow \gamma \gamma$ $\sqrt{s} = 8 \text{ TeV} \int Ldt = 20.7 \text{ fb}^{-1}$ $H \rightarrow ZZ^* \rightarrow 4l$ $\Delta m_H = 2.3^{+0.6}_{-0.7} \pm 0.6 \,\mathrm{GeV}$ • This corresponds to 2.4σ (1.5%) probability) 1σ arxiv:1307.1427 122 123 124 125 126 127 128 129 121 m_н [GeV]

Spin and CP of the new boson

arxiv:1307.1432

- From the observation of $H \rightarrow \gamma \gamma$ one knows that the new particle cannot have J=1 (Landau Yang theorem)
- In general J^P can be measured from the decay angles
- For J≠0 also the production mode (gg, qq) influences the decay angles
 ATLAS
- IvIv: ● H→WW→IvIv:
 - several variables (φ₁, m₁) sensitive to
 J^P, combined with BDT
- I→ZZ→4I:
 - full final state sensitive to J^P can be reconstructed
 - combined in BDT or with matrix element method
- **∍** Н→уу:
 - $cos(\theta^*)$ is sensitive to J, if J=0 no sensitivity to P

Spin and CP (ii)

- Hypotheses tested pair-wise with log likelihood ratio
- O⁻ excluded with 97.8% C.L. (CLs) wrt. to 0⁺ (99.3% exp.)
- For J=2 use minimal coupling, graviton inspired model
- Using WW(ZZ) and γγ complementarity J=2 model excluded with >99.9% C.L. over full range!

Higgs couplings

arxiv:1307.1427

- A single Higgs cross section is proportional to $\Gamma_{f}\Gamma_{H}/\Gamma_{H}$
- There is no model independent way to measure the Higgs width and consequently the partial widths
- Model independent measurements:
 - measure cross sections and express results as $\mu = \sigma_{meas} / \sigma_{SM}$
 - from fits to different categories can get ratio of partial widths of initial state
 - from ratio of different analyses can get ratio of partial widths of final state
- Any further interpretation needs model assumptions!

Model independent results

Further fits

- Fit coupling scale factors κ_{i}
- Fit some factors and set the others the their SM expectation
- If κ_i are fitted assume no new direct Higgs decays
- For fit of κ_{V} and κ_{F} assume no new particles in loop couplings/
- Fits:
 - Fermion and boson couplings or their ratio $(\kappa_{F}(=\kappa_{b}=\kappa_{t}=\kappa_{\tau}...), \kappa_{V}(=\kappa_{W}=\kappa_{Z})$
 - Custodial symmetry W/Z
 - Loop couplings to g and γ
- All fits agree with SM prediction

Scalars 2013

Conclusions

- ATLAS was running well in 2011/2012 and most results contain already the full dataset
- The new particle discovered on July 4, 2012 should be discussed at SCALARS 20nn
- All properties agree with the prediction for a Standard Model Higgs boson with a typical precision of 15%
- Unfortunately no other scalars are found up to now with exclusions up to the TeV scale
- However we start running again 2015 with a factor ~1.75 larger energy and a correspondingly larger search window, so there remains hope...